Меню

Структура системы мониторинга оборудования



Структура системы мониторинга оборудования

ГОСТ Р 53564-2009

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Контроль состояния и диагностика машин

МОНИТОРИНГ СОСТОЯНИЯ ОБОРУДОВАНИЯ ОПАСНЫХ ПРОИЗВОДСТВ

Требования к системам мониторинга

Condition monitoring and diagnostics of machines. Hazardous equipment monitoring. Requirements for monitoring systems

Дата введения 2011-01-01

Предисловие

1 РАЗРАБОТАН Научно-производственным центром «Диагностика, надежность машин и комплексная автоматизация» (НПЦ «Динамика»), Ассоциацией экспертов техногенных объектов повышенной опасности (Ассоциация «Ростехэкспертиза»), Ассоциацией нефтепереработчиков и нефтехимиков России при участии Научно-промышленного союза «Управление рисками, промышленная безопасность, контроль и мониторинг» (НПС «Риском»), Автономной некоммерческой организации «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 183 «Вибрация и удар»

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Март 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт устанавливает классификацию и общие технические требования к комплексным системам мониторинга, предназначенным для определения технического состояния и построения прогноза ресурса оборудования опасных производств в реальном масштабе времени без их остановки, разборки и вывода из эксплуатации.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 14254 (IEC 60529:1989) Степени защиты, обеспечиваемые оболочками (код IP)

ГОСТ Р ИСО 17359 Контроль состояния и диагностика машин. Общее руководство

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 система мониторинга (состояния оборудования): Совокупность процедур, процессов и ресурсов, реализованных с использованием диагностической сети, позволяющая по результатам измерений заданных параметров в заданных точках и наблюдений за работой оборудования получить информацию о текущем техническом состоянии оборудования, опасностях и рисках, связанных с его применением, требуемых действиях обслуживающего персонала и другие сведения, необходимые для реализации установленных предупреждающих мер.

3.2 диагностический контроллер (системы мониторинга): Вычислительное устройство, используемое в составе системы мониторинга состояния оборудования, обеспечивающее управление процессом сбора, обработки и накопления информации о состоянии оборудования, передачу ее в диагностическую сеть, взаимодействие с человеком-оператором.

3.3 диагностическая станция (системы мониторинга): Часть системы компьютерного мониторинга состояния оборудования, включающая диагностический контроллер и средства отображения, регистрации, предупреждения и взаимодействия системы с человеком-оператором и полевой сетью измерительного оборудования.

3.4 диагностическая сеть (системы мониторинга): Комплекс программно-аппаратных средств системы мониторинга состояния оборудования, обеспечивающий передачу, хранение, отображение, регистрацию на удаленных станциях пользователей информации о состоянии оборудования в реальном масштабе времени с выдачей необходимого предупреждения.

3.5 сервер диагностической сети: Программно-аппаратный комплекс на базе специализированного компьютера повышенной надежности, обеспечивающий сбор, хранение, передачу на станции пользователей информации о состоянии оборудования в реальном масштабе времени.

3.6 станция пользователя: Программно-аппаратный комплекс на базе компьютеров общего применения, предназначенный для получения, отображения и протоколирования информации о состоянии оборудования в реальном масштабе времени.

3.7 ошибка динамического распознавания (опасного состояния оборудования): Пропуск своевременного распознавания опасного технического состояния оборудования, вызванный тем, что период между двумя последовательными измерениями значений параметров технического состояния превышает интервал развития неисправности от момента ее обнаружения до предельного состояния оборудования.

3.8 ошибка статического распознавания (опасного состояния оборудования): Пропуск своевременного распознавания опасного технического состояния оборудования, вызванный тем, что неисправное состояние оборудования система мониторинга воспринимает как исправное.

3.9 риск пропуска опасного состояния оборудования: Вероятность пропуска опасного технического состояния оборудования вследствие ошибок динамического и/или статистического распознавания и/или влияния человеческого фактора, выражающегося в несвоевременном выполнении персоналом предписаний системы мониторинга по устранению обнаруженного ею опасного технического состояния оборудования.

4 Классификация

4.1 Принципы построения систем мониторинга

4.1.1 Общие положения

Системы мониторинга должны обеспечивать получение информации об объекте мониторинга в необходимом количестве и качестве для обеспечения наблюдаемости его технического состояния. По результатам наблюдения системы мониторинга производят управляющие воздействия с целью обеспечить необходимый запас устойчивости технологической системы, качество ее функционирования, техногенную, экологическую и экономическую безопасность.

Построение систем мониторинга должно быть выполнено с учетом общих принципов, указанных в 4.1.2-4.1.10.

4.1.2 Принцип достаточности

При построении системы мониторинга следует использовать минимально необходимое число датчиков процессов, сопровождающих работу оборудования и технологической системы в целом, которое способно обеспечить наблюдаемость технического состояния, и минимально необходимое число процедур обработки выходных сигналов датчиков (обнаружения, фильтрации, линеаризации, коррекции амплитудно-фазовых характеристик и т.д.).

4.1.3 Принцип информационной полноты

Совокупность диагностических признаков, используемых в системе мониторинга, должна обеспечивать хорошую обусловленность обратной физической задачи обнаружения всех неисправностей, характерных для объекта мониторинга.

4.1.4 Принцип инвариантности

Выбираемые диагностические признаки должны быть инвариантны к конструкции диагностируемого оборудования и форме корреляции с его неисправностями, что обеспечивает применение стандартных процедур безэталонного диагностирования и прогнозирования ресурса оборудования и, соответственно, уменьшает время разработки и внедрения систем мониторинга.

4.1.5 Принцип самодиагностики

Данный принцип может быть реализован подачей в измерительные и управляющие каналы системы мониторинга специальных тестовых сигналов с последующим анализом их на выходе каналов. Таким образом проверяют функционирование всего тракта системы мониторинга от датчика до компьютерной программы и монитора. Реализация данного принципа обеспечивает легкий пуск систем в эксплуатацию, простоту обслуживания и ремонта отдельных каналов, удобство в адаптировании системы мониторинга к изменяющимся условиям производства.

4.1.6 Принцип структурной гибкости и программируемости

Данный принцип обеспечивает реализацию оптимальной параллельно-последовательной структуры системы мониторинга, исходя из критериев необходимого быстродействия при минимальной стоимости.

Системы с параллельной сосредоточенной структурой (стандарты VME-VXI) имеют максимальное быстродействие при максимальной стоимости. Системы с последовательной распределенной структурой имеют минимальное быстродействие при минимальной стоимости. Системы с последовательно-параллельной структурой занимают промежуточное положение.

Примечание — Главным недостатком применения параллельных систем во взрывопожароопасных производствах является большой расход кабеля, стоимость которого соизмерима со стоимостью системы мониторинга. Выбор структуры системы (степени параллельности) требует оценки ее необходимого быстродействия. Последнее определяется скоростью деградации технического состояния диагностируемого объекта. Например, как показывает опыт, для насосно-компрессорного оборудования опасных производств нефтегазовой отрасли период опроса датчиков не должен превышать 5 мин.

4.1.7 Принцип коррекции

Для обеспечения необходимых метрологических характеристик системы мониторинга неидеальность измерительных трактов (нелинейность, отклонение реальных передаточных характеристик фильтров от номинальных и т.п.) должна быть компенсирована вычислительными методами.

4.1.8 Принцип дружественности интерфейса при максимальной информационной емкости

Интерфейс системы мониторинга должен обеспечивать быстрое и легкое восприятие оператором информации о состоянии технологической системы в целом и получение им предписаний на ближайшие неотложные действия.

Примечание — Для реализации данного принципа используют ЭВМ; дисплеи с графическими экранами, комплексно отражающими состояние объекта и его свойства в автоматическом режиме и под управлением оператора; средства мультимедиа и встроенные экспертные системы, обеспечивающие диагностирование оборудования и технологической системы в целом.

4.1.9 Принцип многоуровневой организации

Система мониторинга должна предусматривать возможность работы с ней специалистов разных уровней квалификации и ответственности.

От специалистов начального уровня квалификации (машинисты, слесари) не следует требовать иных знаний и умений при работе с системой, кроме способности посредством простого действия (например, нажатием одной клавиши), принять сообщения системы об изменении в техническом состоянии оборудования и указаний по его эксплуатации.

От персонала второго уровня квалификации (механики, инженерно-технические работники) требуется выполнение операций по управлению опциями меню для рассмотрения трендов процессов и результатов анализа сигналов, в том числе спектрального. На этом уровне работают также диагносты отделов и цехов технического надзора за состоянием оборудования.

Наличие сетевой поддержки позволяет объединить системы мониторинга разных цехов в систему мониторинга предприятия, к которой подключены компьютеры диагностов технического надзора и пользователей-руководителей — от заместителей и начальников цехов до главных механиков и инженеров производств и предприятия в целом.

Такой многоуровневый контроль обеспечивает эффективное управление техническим состоянием оборудования и его безопасную эксплуатацию. Автоматизированная система мониторинга в рамках всего предприятия или компании должна предусматривать накопление данных о техническом состоянии оборудования и диагностических признаках, что обеспечивает постоянное совершенствование системы.

4.1.10 Принцип интеграции в производственную исполнительную систему предприятия (MES-систему)

Реализация данного принципа обеспечивает автоматический ввод в систему планирования ресурсов предприятия информации о состоянии оборудования, поставленной системой мониторинга, планах его ремонта и т.д., обеспечивая техническое обслуживание и ремонт оборудования по фактическому техническому состоянию.

4.2 Структурная схема системы мониторинга

Общая структурная схема системы мониторинга показана на рисунке 1.

1 — агрегат; 2 — диагностируемый узел; 3 — канал распространения; 4 — система мониторинга; 5 — датчик; 6 — блок согласования; 7 — тракт управления; 8 — тракт распознавания; 9 — анализатор; 10 — блок формирования диагностических признаков; 11 — блок принятия решения; 12 — блок оповещения, отображения и регистрации; 13 — блок сетевых интерфейсов (Intranet/Internet); 14 — информационные базы данных и знаний; 15 — блок управления и синхронизации

Рисунок 1 — Общая структурная схема системы мониторинга

Объект мониторинга представляет собой совокупность агрегатов, каждый из которых содержит до узлов, подлежащих диагностированию. К таким узлам относят те, которые ограничивают надежность и ресурс агрегатов и опасных производств в целом.

Генерируемые в узлах физические процессы (например, колебания) через систему механических и иных связей (каналы распространения) достигают мест, где они воспринимаются системой из датчиков разного типа (в зависимости от применяемого метода диагностирования или неразрушающего контроля).

Анализатор сигналов и блок формирования диагностических признаков осуществляют преобразование массива входных сигналов в массив диагностических признаков, связанных с техническим состоянием объектов, посредством алгоритмов цифровой обработки сигналов.

Блок принятия решения на основании входного массива диагностических признаков и эксплуатационных данных, хранящихся в информационной базе данных и знаний, определяет техническое состояние объектов и выдает требуемую диагностическую информацию и/или указания по приведению объекта в нормальное состояние.

Блок оповещения, отображения и регистрации доводит информацию о состоянии оборудования до персонала с использованием различных каналов: визуального (дисплей системы), звукового, печати (распечатка протоколов на принтере).

Посредством блока сетевых интерфейсов информация о состоянии оборудования передается внешним заинтересованным службам по выделенным линиям локальной сети (Ethernet), каналам последовательной передачи данных (RS-232/485), телефонным линиям с использованием модемов.

Читайте также:  Звуковое оборудование для бизнеса

Источник

Мониторинг производственного оборудования: как с этим дела в России

image

Привет, Хабр! Наша команда занимается мониторингом станков и разных установок по всей стране. По сути, мы обеспечиваем возможность производителю не гонять лишний раз инженера, когда «ой, оно всё сломалось», а на деле надо нажать одну кнопку. Или когда сломалось не на оборудовании, а рядом.

Базовая проблема следующая. Вот вы производите установку для крекинга нефти, либо станок для машиностроения, либо какое-то другое устройство для завода. Как правило, продажа сама по себе крайне редко возможна: обычно это контракт на поставку и обслуживание. То есть вы гарантируете, что железяка будет работать лет 10 без перебоев, а за перебои отвечаете либо финансово, либо обеспечиваете жёсткие SLA, либо что-то подобное.

По факту это означает, что вам нужно регулярно отправлять инженера на объект. Как показывает наша практика, от 30 до 80 % выездов — лишние. Первый случай — можно было бы разобраться, что случилось, удалённо. Либо попросить оператора нажать пару кнопок — и всё заработает. Второй случай — «серые» схемы. Это когда инженер выезжает, ставит в регламент замену или сложные работы, а сам делит компенсацию пополам с кем-то с завода. Или просто наслаждается отдыхом с любовницей (реальный случай) и поэтому любит выезжать почаще. Завод не против.

Установка мониторинга требует модификации железа устройством передачи данных, самой передачи, какого-то озера данных для их накопления, разбора протоколов и среды обработки с возможностью всё посмотреть и сопоставить. Ну и с этим всем есть нюансы.

Почему нельзя обойтись без удалённого мониторинга?

Банально дорого. Командировка для одного инженера — минимум 50 тысяч рублей (самолёт, гостиница, проживание, суточные). Плюс не всегда получается разорваться, и один и тот же человек может быть нужен в разных городах.

  • В России поставщик и потребитель почти всегда достаточно далеко находятся друг от друга. Когда вы продали изделие в Сибирь, вы ничего, кроме того, что вам скажет поставщик, о нём не знаете. Ни как оно работает, ни в каких условиях эксплуатируется, ни, собственно, кто там кривыми руками какую кнопку нажал — этой информации объективно у вас нет, вы её можете знать только со слов потребителя. Это очень усложняет обслуживание.
  • Необоснованные обращения и претензии. То есть ваш заказчик, эксплуатирующий ваше изделие, в любой момент может позвонить, написать, пожаловаться и сказать, что ваша штука не работает, она плохая, она сломалась, приезжайте срочно и чините. Если вам повезло и это не просто «не залили расходник», то вы не зря отправили специалиста. Часто бывает так, что полезная работа занимала меньше часа, а всё остальное — подготовка командировки, перелёты, проживание, — всё это потребовало кучу времени инженера.
  • Бывают явно необоснованные претензии, и, чтобы это доказать, нужно отправить инженера, составить акт, обратиться в суд. В результате этого процесс затягивается, и ничего хорошего ни для заказчика, ни для вас это вообще не несёт.
  • Споры возникают из-за того, что, например, заказчик неправильно эксплуатировал изделие, заказчик по каким-то причинам имеет на вас зуб и не говорит о том, что ваше изделие работало неправильно, не в тех режимах, которые заявлены в ТЗ и в паспорте. При этом противопоставить ему вы ничего не можете или можете, но с трудом, если, например, ваше изделие как-то ведёт логирование и запись тех режимов. Поломки по вине заказчика — это происходит вообще сплошь и рядом. У меня был случай, когда дорогущий немецкий портальный станок сломался из-за наезда на столб. Оператор не делал привязку к нулю, и в результате там станок встал. Причём заказчик совершенно чётко сказал: «А мы тут ни при чём». Но логировалась информация, и можно было эти логи поднять и понять, на какой управляющей программе и в результате чего произошёл этот самый наезд. Это спасло очень большие расходы поставщика в связи с гарантийным ремонтом.
  • Упомянутые «серые» схемы — сговор с сервисником. Сервисник ездит к заказчику постоянно один и тот же. Ему говорят: «Слушай, Коль, давай знаешь как сделаем: ты напишешь, что у нас тут всё поломалось, компенсацию получим, или привезёшь для ремонта какой-то зип. Мы всё это тихой сапой реализуем, деньги поделим». Остаётся либо верить, либо как-то измысливать какие-то сложные пути проверки этих всех умозаключений, подтверждений, что не прибавляет ни времени, ни нервов, и ничего хорошего в этом не происходит. Если вы знакомы с тем, как автосервисы борются с мошенничествами по гарантии и сколько сложностей это накладывает на процессы, то примерно понимаете проблему.

Ну так все же устройства пишут лог, правда? В чём проблема?

Проблема в том, что если поставщики более-менее понимают, что лог нужно постоянно писать куда-то (или поняли за последние несколько десятков лет), то дальше культура не пошла. Лог часто нужен для разбора случаев с дорогостоящим ремонтом — была ли это ошибка оператора или реальная поломка оборудования.

Чтобы забрать лог, часто нужно подойти физически к оборудованию, открыть какой-то кожух, обнажить сервисный разъём, подключить к нему кабель и забрать файлы данных. Потом упорно грепать их несколько часов, чтобы получить картину ситуации. Увы, но так происходит почти везде (ну либо у меня однобокая точка зрения, поскольку мы работаем как раз с теми производствами, где мониторинг только налаживается).

Наши основные клиенты — производители оборудования. Как правило, они начинают задумываться о том, что стоит как-то заняться мониторингом, либо после какого-то крупного инцидента, либо просто глядя на счета за командировки за год. Но чаще всё же речь идёт о крупном сбое с потерей денег или репутации. Прогрессивные руководители, которые задумываются о том, чтобы «как бы чего не случилось», редки. Дело в том, что обычно руководителю достаётся старый «парк» сервисных контрактов, а ставить датчики на новое железо он смысла не видит, потому что понадобится это только через пару лет.

В общем, в какой-то момент жареный петух всё же клюёт, и наступает время модификаций.

Сама по себе передача данных не очень страшна. На оборудовании обычно уже есть датчики (либо они довольно быстро ставятся), плюс уже пишутся логи и отмечаются сервисные события. Всё это нужно только начать отправлять. Общая практика — прямо в устройство от рентген-аппарата до автоматической сеялки вставляется какой-то модем, например, с embed-SIM, и отправляет телеметрию через сотовую сеть. Места, где сотового покрытия нет, как правило, находятся довольно далеко и в последние годы редки.

А дальше начинается тот же самый вопрос, что и раньше. Да, логи теперь есть. Но их нужно куда-то складывать и как-то их читать. В общем случае нужна какая-то система визуализации и разбора инцидентов.

image

И тут на сцене появляемся мы. Точнее, часто мы появляемся раньше, поскольку руководители поставщиков смотрят, как сделано у коллег, и сразу едут к нам советоваться по поводу подбора железа для отправки телеметрии.

Рыночная ниша

На Западе путь решения такой ситуации сводится к трём вариантам: Siemens-экосистема (очень дорого, нужно для очень крупных узлов, как правило, типа турбин), самописные мандулы или кто-то из локальных интеграторов помогает. В итоге к приходу всего этого на российский рынок образовалась среда, где есть Siemens со своими кусками экосистемы, Amazon, Nokia и несколько локальных экосистем вроде разработок 1С.

Мы зашли на рынок как объединяющее звено, позволяющее собирать любые данные с любых устройств по любым (ладно, почти любым более-менее современным) протоколам, обрабатывать их вместе и показывать их человеку в любом требуемом виде: для этого у нас есть крутые SDK для всех сред разработки и визуальный конструктор пользовательских интерфейсов.

В итоге мы можем собрать все данные с устройства производителя, завести в хранилище на сервере и собрать там панель мониторинга с алертами.

Вот так это выглядит (здесь заказчик сделал ещё визуализацию предприятия, это несколько часов в интерфейсе):

image

image

image

image

И есть графики с оборудования:

image

image

Алерты выглядят так: на уровне станка, если превысили усилие на исполнительном органе или возникло столкновение, настраивается набор параметров, и система будет информировать отдел или ремонтные службы при выходе за них.

Ну и самое сложное — прогнозирование выхода из строя узлов по их состоянию для профилактики. Если понимать ресурс каждого из узлов, то можно сильно сократить расходы на тех контрактах, где идёт оплата за простой.

Резюме

Эта история звучала бы довольно просто: ну поняли, что нужно отправлять данные, мониторинг и анализ, ну выбрали вендора и внедрили. Ну и всё, все счастливы. Если речь идёт про самописные системы на своём же заводе, то, как это ни странно, системы быстро становятся недостоверными. Речь идёт о банальной потере логов, неточных данных, сбоях в сборе, хранении и получении. Через год-два после установки начинают удалять старые логи, что тоже не всегда хорошо заканчивается. Хотя там практика — с одного станка за год собирается 10 Гб. Решается это на пять лет покупкой ещё одного жёсткого диска за 10 тысяч рублей… В какой-то момент выясняется, что первично не само передающее оборудование, а система, которая позволяет получаемые данные анализировать. Важно удобство интерфейса. Это вообще беда всех промышленных систем: быстро разобраться в ситуации не всегда просто. Важно, сколько данных видно в системе, количество параметров с узла, способность системы оперировать большим объёмом и количеством данных. Настройка дашбордов, встроенная модель самого устройства, редактор сцен (чтобы рисовать схемы размещения на производствах).

Давайте приведу пару примеров, что это даёт на практике.

  1. Вот глобальная компания-производитель промышленного холодильного оборудования, используемого в основном в торговых сетях. 10 % дохода компании приносит оказание сервисных услуг по обслуживанию своей продукции. Нужно сократить себестоимость сервисных услуг и вообще дать возможность нормально увеличивать поставки, потому что, если продавать больше, то имеющаяся система сервисного обслуживания не справится. Подключились напрямую к платформе единого сервисного центра, модифицировали пару модулей для нужд именно этого заказчика, получили снижение командировочных расходов на 35 % за счёт того, что доступ к сервисной информации предоставляет возможность выявлять причины выхода из строя без выезда сервисного инженера. Анализ данных за длительные интервалы времени — прогнозировать техническое состояние и при необходимости быстро выполнять обслуживание «по состоянию». В качестве бонуса увеличилась скорость реакции на запрос: выездов стало меньше, инженеры стали успевать быстрее.
  2. Машиностроительная компания, производитель электрического транспорта, используемого во многих городах РФ и СНГ. Как и все, они хотят сократить расходы и при этом прогнозировать техсостояние троллейбусного и трамвайного парков города, чтобы вовремя уведомлять техперсонал. Подключили, создали алгоритмы сбора и передачи технических данных от подвижного состава в единый ситуационный центр (алгоритмы встраиваются непосредственно в систему управления приводами и работают с данными CAN-шины). Удалённый доступ к данным о техническом состоянии, включая доступ в реальном времени к изменяющимся параметрам (скорость, напряжение, передача рекуперированной энергии и др.) в режиме «осциллографа», дали доступ к удалённому обновлению прошивки. Результат — снижение командировочных расходов на 50 %: прямой доступ к сервисной информации предоставляет возможность выявлять причины выхода из строя без выезда сервисного инженера, а анализ данных за длительные интервалы времени — прогнозировать техническое состояние и при необходимости быстро выполнять обслуживание «по состоянию», включая объективный анализ нештатных ситуаций. Реализация контрактов расширенного жизненного цикла в полном соответствии с требованиями Заказчика и в установленные сроки. Соответствие требованиям Технического задания эксплуатанта, а также предоставление ему новых возможностей в части контроля характеристик потребительского сервиса (качество кондиционирования, разгон/торможение и т. п.).
  3. Третий пример — муниципалитет. Нужно экономить электричество и повышать безопасность граждан. Подключили единую платформу для контроля, управления и сбора данных о подключённом уличном освещении, удалённое управление всей инфраструктурой общественного освещения и обслуживание его с единой панели управления, обеспечивающее решение следующих задач. Фичи: затемнение или включение/выключение освещения дистанционно, индивидуально или в группе, автоматическое уведомление городских служб о сбоях в точках освещения для более эффективного планирования ТО, предоставление в реальном времени данных о потреблении энергии, предоставление мощных аналитических инструментов для мониторинга и улучшения системы уличного освещения на основе Big Data, предоставление данных о трафике, состоянии воздуха, интеграция с другими подсистемами «Умного города». Результаты — сокращение расхода электроэнергии на уличное освещение до 80 %, повышение безопасности для жителей за счёт использования интеллектуальных алгоритмов управления освещением (человек идёт по улице — включить ему свет, человек на переходе — включить ярче освещение, чтобы его было заметно издалека), обеспечение города дополнительными сервисами (зарядка электромобилей, предоставление рекламного контента, видеонаблюдение и пр.).
Читайте также:  Великолукский завод пескоструйного оборудования

Собственно, что я хотел сказать: сегодня с готовой платформой (например, нашей) настроить мониторинг можно очень быстро и просто. Для этого не нужны изменения в оборудовании (либо минимальные, если датчиков и передачи данных до сих пор нет), для этого не нужны затраты на внедрение и отдельные специалисты. Надо просто изучить вопрос, потратить пару дней на то, чтобы понять, как это работает, и несколько недель на согласования, договор и обмен данными про протоколы. И после этого у вас будут точные данные со всех устройств. И всё это можно делать по всей стране при поддержке интегратора Техносерва, то есть мы гарантируем хороший уровень надёжности, нехарактерный для стартапа.

В следующем посте я покажу, как это выглядит со стороны поставщика, на примере одного внедрения.

Источник

Система мониторинга состояния оборудования

2.26. Система мониторинга состояния оборудования: система (машина), продуктом которой является текущая информация о техническом состоянии оборудования и его опасности с необходимыми комментариями (прогноз остаточного ресурса, предписания на неотложные действия персонала и т.д.) и заданным риском.

2.26. Система мониторинга состояния оборудования: система (машина), продуктом которой является текущая информация о техническом состоянии оборудования и его опасности с необходимыми комментариями (прогноз остаточного ресурса, предписания на неотложные действия персонала и т.д.) и заданным риском.

3. Обозначения и сокращения

В настоящем стандарте применены следующие сокращения.

АЧХ — амплитудно-частотная характеристика

АХ — амплитудная характеристика

ДС — диагностическая станция

МНК — методы неразрушающего контроля

ПТЭ — правила технической эксплуатации электроустановок потребителей

СКЗ — среднее квадратическое значение

СМ — система мониторинга

СЭВТ — средства электронно-вычислительной техники

ТДИ — таходатчик индуктивный

ТПМ — требует принятия мер

ТПТ — трансформаторный преобразователь тока

SPR — размах виброперемещения

4.1 Принципы построения систем мониторинга

4.1.1. Системы мониторинга (СМ) должны обеспечивать получение информации о состоянии оборудования (объекта мониторинга) в необходимом количестве и качестве для обеспечения наблюдаемости его технического состояния. По результатам наблюдения СМ должны заблаговременно вырабатывать управляющие воздействия, которые обеспечивают необходимый запас устойчивости технологической системы, качество ее функционирования, создают необходимый запас ее техногенной, экологической и экономической безопасности.

4.1.2. Принцип достаточности регламентирует выбор минимального числа датчиков вторичных процессов, сопровождающих работу машин, оборудования и технологической системы в целом, обеспечивающих наблюдаемость технического состояния. При этом выходной сигнал датчиков может быть представлен в широком диапазоне амплитуд и частот с последующей обработкой его в компьютере (обнаружением, фильтрацией, линеаризацией, коррекцией амплитудно-фазовых характеристик и т.д.).

4.1.3. Принцип информационной полноты отражает ограниченность наших знаний об окружающем мире и в общем виде может быть сформулирован так, что помимо известных нам диагностических признаков, описывающих техническое состояние объекта известным образом, из спектра сигнала после удаления из него известных признаков выделяют остаточный «шум», характеристики которого также используют для диагностики. При достаточно общих условиях такая система признаков почти ортогональна, т.е. каждый из признаков отражает свой класс неисправностей оборудования.

4.1.4. Принцип инвариантности регламентирует выбор и селекцию таких диагностических признаков, которые инвариантны к конструкции оборудования и форме связи с параметрами ее технического состояния, что обеспечивает применение стандартных процедур без эталонной диагностики и прогнозирования ресурса машин и, соответственно, быстрые темпы разработки и внедрения СМ, переводя их в разряд стандартных промышленных систем обеспечения безопасности оборудования и процессов.

4.1.5. Принцип самодиагностики всех измерительных и управляющих каналов СМ реализуется подачей специальных стимулирующих сигналов в цепь датчика и компьютерного анализа этого сигнала на выходе системы. Таким образом, проверяется функционирование всего тракта СМ от датчика до компьютерной программы и монитора. Реализация этого принципа обеспечивает легкий пуск систем в эксплуатацию, простоту обслуживания и ремонта отдельных каналов, высокую метрологическую и функциональную надежность системы, ее выживаемость и приспособляемость к постоянно меняющимся условиям реального производства.

4.1.6. Принцип структурной гибкости и программируемости обеспечивает реализацию оптимальной параллельно-последовательной структуры ИДС, исходя из критериев необходимого быстродействия при минимальной стоимости. Системы с параллельной сосредоточенной структурой (VME-VXI) имеют максимальное быстродействие при максимальной стоимости. Системы с последовательной распределенной структурой имеют минимальное быстродействие при минимальной стоимости. Системы с последовательно-параллельной структурой занимают промежуточное положение. Главным недостатком применения параллельных систем во взрывопожароопасных производствах является большой расход кабеля, стоимость которого соизмерима со стоимостью СМ. Выбор структуры системы (степени параллельности) требует оценки ее необходимого быстродействия. Последнее определяется скоростью деградации технического состояния диагностируемого объекта и, как показывает опыт, для насосно-компрессорного оборудования опасных производств нефтегазовой отрасли период опроса датчиков не должен превышать 5 мин.

4.1.7. Принцип коррекции неидеальностей измерительных трактов вычислительными методами на ЭВМ — нелинейности датчиков, амплитудно-фазовых характеристик согласующее преобразовательных трактов и т.д. обеспечивает высокую точность и стабильность метрологических характеристик СМ.

4.1.8. Принцип дружественности интерфейса при максимальной информационной емкости обеспечивает восприятие оператором состояния технологической системы в целом при одном взгляде на монитор и получение целеуказующего предписания на ближайшие неотложные действия. Осуществление этого принципа возможно только при наличии ЭВМ, дисплея с графическими экранами, комплексно отражающими состояние объекта и его свойств в автоматическом режиме и под управлением оператора, средств мультимедиа и встроенной экспертной системы, диагностирующей состояние машин и технологической системы в целом.

4.1.9. Принцип многоуровневой организации обеспечивает работу с системой специалистам разных уровней квалификации и ответственности, а также позволяет удовлетворять любознательность персонала по мере повышения его квалификации. На первом уровне, при работе с машинистами и слесарями, система не должна требовать от них почти никаких знаний, кроме знания клавиши «Пробел», нажатием на которую квитируют прием сообщений системы о неблагоприятном состоянии оборудования и указаний по его эксплуатации. На втором уровне, при работе с механиками и ИТР, требуется выполнение операций по управлению опциями меню для рассмотрения трендов процессов и результатов анализа сигналов, в том числе спектрального. На этом уровне работают также диагносты отделов и цехов технического надзора за состоянием оборудования. Благодаря наличию сетевой поддержки системы разных цехов объединяются в диагностическую сеть предприятия, к которой подключены компьютеры диагностов технического надзора и пользователей-руководителей — от заместителей и начальников цехов до главных механиков и инженеров производств и предприятия в целом. Такой многоуровневый контроль обеспечивает эффективное управление со стоянием оборудования и его безопасной эксплуатацией.

x002.jpg

Структурная схема системы мониторинга (СМ):

11. 1N — N агрегатов; 21 — 2m — m диагностируемых узлов в агрегате; 31 – 3n — каналы распространения сигналов от m узлов к п датчикам; 4 — система мониторинга (СМ); 5 — блок датчиков (БД); 6 — блок согласования (БС); 7 — тракт управления (ТУ); 8 — тракт распознавания (ТР); 9 — анализатор (АС); 10 — блок формирования диагностических признаков (БФДП); 11 — блок принятия решения (БПР); 12 — блок оповещения, отображения и регистрации (БОР); 13 — блок сетевых интерфейсов (БОЛ) (Intranet/Internet); 14 — информационные базы данных и знаний (конфигурации оборудования и СМ, архивы сигналов, событий, база знаний) (БДЗ); 15 — блок управления и синхронизации (БУС)

Важная сторона при организации диагностической сети — это организация автоматизированной системы диагностических исследований в рамках всего предприятия или компании, когда в исследовательской службе автоматически накапливаются данные о состоянии оборудования и диагностических признаках, что обеспечивает постоянное развитие и совершенствование подобных систем.

4.1.10. Принцип организации производственных исполнительных систем предприятия (MES-систем) реального времени обеспечивает автоматический ввод в систему планирования ресурсов предприятия информации о состоянии оборудования, поставленной СМ, планах его ремонта т.д., обеспечивая техническое обслуживание и ремонт оборудования (ТОРО) по фактическому техническому состоянию.

4.2. Структурная схема системы

4.2.1. Общая структурная схема системы мониторинга приведена на рисунке.

4.2.2. Объект мониторинга представляет собой совокупность агрегатов 1-1. 1-k. 1-N, каждый из которых содержит до m узлов 2, подлежащих диагностированию. В качестве таких уз лов определяют те, которые ограничивают надежность и ресурс агрегатов и опасных производств в целом.

4.2.3. Диагностические сигналы <ζ>m = <ζ1. ζm> от диагностируемых узлов 2 через каналы 3 распространения колебаний Nij поступают на точки внешней поверхности агрегата и далее в систему мониторинга 4, где воспринимаются ее датчика ми 5-i, 1=I=n с использованием методов неразрушающего контроля (МНК): акустического, акустико-эмиссионного, вибродиагностического, визуально-измерительного (параметрического), вихретокового, магнитного, оптического, теплового, радиоволнового, электрического и др.

4.2.4. Анализатор сигналов 9 и блок формирования диагностических признаков 10 осуществляют преобразование массива входных сигналов в массив диагностических признаков, связанных с состоянием объектов на основе алгоритмов цифровой обработки сигналов.

4.2.5. Блок принятия решения 11 на основании входного массива диагностических признаков и эксплуатационных данных, хранящихся в информационной базе данных и знаний 14, определяет состояние объектов и выдает требуемую диагностическую информацию, и/или указания по приведению объекта в допустимое состояние.

4.2.6. Блок оповещения, отображения и регистрации 12 доводит информацию о состоянии оборудования до персонала с использованием различных каналов; визуального (дисплей системы), звукового, осуществляет распечатку протоколов (принтер системы).

4.2.7. Посредством блока сетевых интерфейсов 13 информация о состоянии оборудования передается внешним заинтересованным службам по выделенным Ethernet каналам, последовательным каналам (RS232, 485), телефонным линиям с использованием модемов.

4.2.8. Информационная база данных и знаний 14 содержит:

— базы данных конфигурации диагностируемого оборудования, конфигурации системы, базы данных значений диагностических признаков, сигналов, трендов, журналов, и других необходимых для работы системы данных;

— базы знаний, необходимые для работы экспертной системы.

4.2.9. Блок управления и синхронизации 15 осуществляет общее управление всей системой по определенному алгоритму и/или набору адаптивных алгоритмов.

4.3. Классификация систем мониторинга (СМ)

Устанавливается классификация систем мониторинга по следующим факторам:

— числу и виду используемых МНК;

— по типу экспертной системы;

— по объему выявляемых неисправностей;

— по величине статической ошибки распознавания состояния оборудования;

— по величине динамической ошибки распознавания состояния оборудования;

— по величине риска пропуска внезапного отказа;

— по числу измерительных каналов системы;

— по способу опроса датчиков;

— по типу используемого анализатора сигналов;

— по типу индикатора состояния;

— по наличию и уровню диагностической сети;

— по типу управления.

4.3.1. Классификация по числу и виду используемых МНК

Устанавливаются следующие группы систем:

1. Комплексные системы.

Читайте также:  Оборудование ортопедическое для детски

2. Специализированные системы.

Специализированные системы используют один из МНК (например, согласно [13]). Комплексные системы используют набор различных МНК.

4.3.2. Классификация по типу экспертной системы

Устанавливаются следующие группы систем:

1. Системы поддержки принятия решений (ЭСППР).

2. Диагностические (ЭСД).

3. Системы индикации состояния (СИС).

Системы индикации состояния осуществляют только определение технического состояния объекта (годен/не годен), без указаний на вид неисправности.

Диагностические системы наряду с определением технического состояния должны определять одну или несколько причин (вид) неисправного состояния объекта.

Системы поддержки принятия решений включают свойства диагностических систем и должны выдавать целеуказующие предписания персоналу для предотвращения опасного состояния объекта и приведения его в нормальное состояние.

4.3.3. Классификация по объему выявляемых неисправностей

Устанавливаются следующие группы систем:

1. Широкого класса.

2. Узкого класса.

Системы узкого класса выявляют неисправности только одного узла агрегата, например подшипника.

Системы широкого класса должны выявлять неисправности раз личных узлов агрегата, а также неисправности в его работе по технологической схеме установки.

4.3.4. Классификация по величине статической ошибки распознавания состояния оборудования

Устанавливаются следующие группы систем:

1. Низкой статической ошибки.

2. Средней статической ошибки.

3. Высокой статической ошибки.

Системы низкой статической ошибки должны иметь ошибку 30%.

4.3.5. Классификация по величине динамической ошибки распознавания состояния оборудования

Устанавливаются следующие группы систем:

1. Низкой динамической ошибки.

2. Средней динамической ошибки.

3. Высокой динамической ошибки.

Системы низкой динамической ошибки должны иметь ошибку 30%.

4.3.6. Классификация по величине риска пропуска внезапного отказа

Устанавливаются следующие группы систем:

1. Низкого риска пропуска.

2. Среднего риска пропуска.

3. Высокого риска пропуска.

Системы низкого риска пропуска должны иметь величину риска пропуска внезапного отказа 30%.

4.3.7. Классификация по числу измерительных каналов системы

Устанавливаются следующие группы систем:

4.3.8. Классификация по способу опроса датчиков

Устанавливаются следующие группы систем:

1. Универсальные (параллельно-последовательные).

Последовательные системы осуществляют поочередное измерение сигналов и их обработку. Последовательные измерения могут проводиться как автоматически, так и человеком-оператором (переносные системы).

Универсальные (параллельно-последовательные) системы имеют смешанную структуру: устанавливаются группы каналов, внутри группы каналы измеряется последовательно и затем осуществляется параллельная обработка выходных сигналов групп и/или наоборот.

Параллельные системы осуществляют одновременное измерение сигналов и их последующую обработку.

4.3.9. Классификация по архитектуре

Устанавливаются следующие группы систем:

Вся аппаратура сосредоточенной системы (за исключением датчиков) размещается в одном месте, как правило, на удалении от объекта контроля.

Аппаратура распределенной системы может размещаться непосредственно на объекте контроля.

4.3.10. Классификация по типу используемого анализатора сигналов

Устанавливаются следующие группы систем:

В скалярных системах результатом работы анализатора сигналов являются скалярные числа (общий уровень вибрации, температура и т.д.).

Векторные системы в результате обработки информации наряду со скалярными должны выдавать одномерные и многомерные массивы, производить спектральную, корреляционную, и другую математическую обработку.

4.3.11. Классификация по типу индикатора состояния

Устанавливаются следующие группы систем:

Простые индикаторы состояния имеют только функцию отображения состояния объекта.

Многоуровневые индикаторы состояния наряду с отображением состояния объекта должны иметь функции отображения состояний и параметров различных его составных частей.

Комплексные индикаторы состояния включают функции много уровневых индикаторов и должны отображать даты пуска/ останова систем и агрегатов, их наработки на разные виды ремонта, прогноз остаточного ресурса, а также выводить информацию по следующим каналам: звуковой вывод, печать протоколов, передача данных по сети (публикация на Web сервере).

4.3.12. Классификация по наличию и уровню диагностической сети

Устанавливаются следующие группы систем:

1. Автоматическая диагностическая сеть.

2. Ручная диагностическая сеть, интегрированная с переносными системами.

3. Ручная диагностическая сеть.

4. Нет диагностической сети.

Ручная диагностическая сеть обеспечивает доступ к данным стационарных систем мониторинга и диагностики с компьютеров удаленных пользователей путем ручных операций по манипуляции с адресами, поиском нужных файлов, режимами их просмотра и регистрации.

Ручная диагностическая сеть, интегрированная с переносными (персональными) системами должна обеспечивать с помощью ручных операций доступ удаленных пользователей к данным как стационарных СМ, так и переносных систем диагностики.

Автоматическая диагностическая сеть должна обеспечивать автоматическое представление на компьютерах удаленных пользователей полной информации о состоянии оборудования при одном обращении к сети, полученной как автоматическими стационарны ми СМ, так и переносными (персональными) системами диагностики. При этом представление информации на дисплее пользователя должно совпадать с представлением информации на дисплеях стационарных и переносных систем. Передача информации производится посредством выделенных и коммутируемых телефонных каналов, проводных и оптических линий Ethernet, радиоканалов.

4.3.13. Классификация по типу управления

Устанавливаются следующие группы систем:

Ручные системы выполняют большинство функций мониторинга под управлением человека-оператора.

Автоматизированные системы должны выполнять основные функции мониторинга автоматически, а вспомогательные — под управлением человека-оператора.

Автоматические системы мониторинга должны выполнять все функции мониторинга автоматически. Человек в автоматических системах может использоваться как звено управления для выдачи управляющих воздействий на объект.

4.4. Определение класса системы

4.4.1. Класс системы определяют по выражению:

где К — комплексный показатель, определяющий класс системы;

ПRi — произведение значений номеров пунктов подразделов

4.13.1. — 4.3.13, соответствующих свойствам системы;

Int — целая часть числа.

Системы первого класса имеют К=1.

Системы второго класса имеют К=2.

Системы третьего класса имеют К=3.

4.4.2. Пример расчета класса систем для показателей классификации, представленных выше, приведен в табл. 1.

Источник

Для чего нужен мониторинг ЧПУ станков

Что такое мониторинг работы станка с ЧПУ, и для чего он нужен. Технологии, виды систем мониторинга, рекомендации. Возможные причины простоя станков.

Применение мониторинга станков с ЧПУ обеспечивает эффективность современного производства. Он осуществляется при помощи специальных устройств и программного обеспечения. Сегодня мониторинг работы оборудования применяется на крупных и небольших предприятиях, а также используется частными предпринимателями. Новые компоненты способны дать возможность управления работой в режиме реального времени.

Что такое станки с ЧПУ?

Станки с ЧПУ – современное автоматическое оборудование, имеющее числовое программное управление. Основными особенностями станков с ЧПУ являются высокие показатели производительности и точности. Они используются для различной обработки запчастей:

  • точение;
  • сверление;
  • фрезерование;
  • шлифование.

Вся работа и ее изменение осуществляется автоматически. За работу устройства отвечает носитель программ. На нем имеется информация геометрического и технологического типа. Станки с ЧПУ способны заменить целый комплекс целевого оборудования.

Что такое мониторинг работы оборудования, и для чего он нужен?

Мониторинг оборудования позволяет определить, в каком состоянии находится станок. Он осуществляет запись начала работы, конца работы, а также выявляет причины ошибок. Производственные данные показывают, какую работу осуществляет станок, сколько времени и по какой причине он простаивает. Благодаря мониторингу можно определить настоящую производительность устройства, структуру производства, и создать оптимальную нагрузку.

процесс мониторинга станков с чпу

Мониторинг станков ЧПУ позволяет:

  • получить объективные параметры устройства;
  • оптимизировать производство, и повысить ответственность работников;
  • увеличить время работы оборудования;
  • получить необходимые данные для реализации новых задач;
  • решить вопросы касательно неисправности структуры устройств.

Технологии мониторинга

Системы мониторинга оборудования предполагают использование общей сети для передачи информации на сервер. Изучение информации осуществляется с использованием специальных приложений. Приложения дают возможность следить за станками в реальном времени, но использовать их в управлении на расстоянии нельзя.

Система, используемая для наблюдения за агрегатами, реализуется в двух основных вариантах:

  • аппаратном – конструкция устройства связывается с датчиками или терминалами, которые фиксируют его состояние;
  • программном – станок подключается к общей сети, которая автоматически передает данные о его состоянии.

Многие предприятия для осуществления более качественного наблюдения за станками с ЧПУ используют комбинированный метод, предполагающий сочетание обоих вариантов. Некоторые технологии такого типа созданы на основе приложения DNC. Основным достоинством, которое имеет аппаратная реализация, является возможность осуществления слежения практически за любым устройством. Оператор станка может лично осуществлять контроль за работой на станке. Но для реализации системы потребуется не только покупка программного обеспечения, но и аппаратного оборудования.

оператор контролирует станок с чпу

Недостатками системы являются:

  • не все станки ЧПУ обеспечены сетевой картой и возможностью подключения к интернет-сети;
  • лишь часть из них возможно подключить к незащищенному обмену информацией;
  • ввиду отсутствия единого стандарта, полученную информацию придется обрабатывать самостоятельно.

На большинстве предприятий комплекс станков состоит из множества устройств, имеющих различные виды и комплектацию. На части из них может отсутствовать возможность реализации мониторинговой системы, и иметься особая структура. Современные станки обеспечиваются фирменным программным обеспечением для возможности осуществления диагностики и наблюдения.

Но технология реализуется лишь для станков определенного ПО. Использовать ее на агрегатах другого типа нельзя.

Возможные причины простоя станков с ЧПУ

Причины простоя станков с ЧПУ определяются несколькими способами. Современные станки имеют программное обеспечение, в состав которого входит приложение для осуществления обследования. Полезные утилиты периодически обновляются, благодаря чему система ЧПУ получает новые возможности. Если оператор, или помощник оператора имеет такое приложение, он сможет узнать о причине простоя, посмотрев на экран устройства.

Второй способ является более старым. Он предполагает использование программ, благодаря которым система мониторинга может выдать название возможной причины простоя. Эффективность этого способа более низкая, чем у первого варианта.

простой станков с чпу

Современные приложения устанавливаются на смарт-устройства. Для того, чтобы получить информацию и причине простоя, не нужно находиться рядом с устройством. Недостатком данного вариант является частная невозможность своевременно исправить проблему.

Система мониторинга станков ЧПУ рассматривает неограниченное количество причин, по которым может происходить простой. В списке основных из них находятся:

  • наладка оборудования;
  • осуществление технического обслуживания;
  • материал для работы отсутствует;
  • инструмент для работы отсутствует;
  • нет программы для работы.

Виды систем мониторинга

Среди станков с ЧПУ, поступающих в продажу, лишь 15 % оснащается технологией мониторинга. Рынок систем наблюдения за станками составляет около 250 миллионов долларов. По оценкам экспертов, он может достигнуть 1 миллиарда долларов уже в ближайшие годы. Наибольшее распространение системы мониторинга получили в Соединенных Штатах Америки и странах ЕС. В РФ рынок систем мониторинга станков с ЧПУ превышает отметку в 150 миллионов рублей.

В числе наиболее популярных технологий находятся:

  • Winnum CNC – стоимостью до 140 тысяч рублей;
  • DPA – стоимостью до 35 тысяч рублей;
  • CIMCO MDC-Max – стоимостью до 40 тысяч рублей;
  • АИС Диспетчер – стоимостью до 70 тысяч рублей;
  • СМПО Foreman – стоимостью до 75 тысяч рублей (аппаратная часть) и до 40 тысяч рублей (приложения);
  • НАВИМАН – стоимостью до 200 тысяч рублей.

Winnum CNC программа

Повышение популярности к системам мониторинга возросло за последние два года. Данная особенность связана с преимуществами технологии. Благодаря ей руководители крупных предприятий могут сами отслеживать работу оборудования, покупку которого они осуществили, молодые предприниматели получили возможность здраво расценивать перспективы развития.

Рекомендации к использованию системы мониторинга

Пред установкой системы мониторинга, следует определиться с целью, для которой она будет использована:

  • сбор информации о работе на станках;
  • повышение качества работы.

Для осуществления первой цели достаточно будет использование программ. Вторая цель потребует программно-аппаратного решения. Перед установкой оборудования требуется узнать, способен ли станок поддерживать программу по сбору информации. Если станок не располагает такой возможностью, то для осуществления цели потребуется использование аппаратных систем.

Мониторинг может производиться благодаря контролю нагрузки. Более надежным является сканер. Он учитывает действия, которые осуществляет станок, и изготовленные детали.

Одним из лучших способов повышения производства является использование обратной связи между системой мониторинга и цеховыми службами. Использование беспроводной сети может привести к ошибкам и снижению точности. Аналогичным трудности может вызвать использование «коллективного пульта». Система мониторинга способна выявить проблемы, и решить их лишь частично. Для полного решение может понадобиться помощь человека.

Источник