Двухконтурная атомная электростанция. Принципы работы. Схема принципиальная функционирования.
Наиболее важной классификацией для АЭС является их классификация по числу контуров. Различают АЭС одноконтурные,двухконтурные и трехконтурные. В любом случае на современных АЭС в качестве двигателя применяют паровые турбины.
В системе АЭС различают теплоносительи рабочее тело . Рабочим телом, то есть средой, совершающей работу, с преобразованием тепловой энергии в механическую, является водяной пар. Требования к чистоте пара, поступающего на турбину, настолько высоки, что могут быть удовлетворены с экономически приемлемыми показателями только при конденсации всего пара и возврате конденсата в цикл. Поэтому контур рабочего тела для АЭС, как и для любой современной тепловой электростанции, всегда замкнут и добавочная вода поступает в него лишь в небольших количествах для восполнения утечек и некоторых других потерь конденсата.
Назначение теплоносителя на АЭС — отводить теплоту, выделяющуюся в реакторе. Для предотвращения отложений на тепловыделяющих элементах необходима высокая чистота теплоносителя. Поэтому для него также необходим замкнутый контур и в особенности потому, что теплоноситель реактора всегда радиоактивен.
Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной . Соответственно контур теплоносителя называют первым, а контур рабочего тела — вторым. В такой схеме реактор охлаждается теплоносителем, прокачиваемым через него и парогенератор главным циркуляционным насосом. Образованный таким образом контур теплоносителя является радиоактивным, он включает в себя не все оборудование станции, а лишь его часть. В систему первого контура входит компенсатор объема, так как объем теплоносителя изменяется в зависимости от температуры.
Пар из парогенератора двухконтурной АЭС поступает в турбину, затем в конденсатор, а конденсат из него насосом возвращается в парогенератор. Образованный таким образом второй контур включает в себя оборудование, работающее в отсутствие радиации; это упрощает эксплуатацию станции. На двухконтурной АЭС обязателен парогенератор — устройство , разделяющее оба контура, поэтому оно в равной степени принадлежит как первому, так и второму. Передача теплоты через поверхность нагрева требует перепада температур между теплоносителем и кипящей водой в парогенераторе. Для водного теплоносителя это означает поддержание в первом контуре более высокого давления, чем давление пара, подаваемого на турбину. Стремление избежать закипания теплоносителя в активной зоне реактора приводит к необходимости иметь в первом контуре давление, существенно превышающее давление во втором контуре. По двухконтурной схеме работают Нововоронежская, Кольская, Балаковская и Калининская АЭС.
В качестве теплоносителя в схеме АЭС, показанной на рис. 2.2 б, могут быть использованы также и газы. Газовый теплоноситель прокачивается через реактор и парогенератор газодувкой , играющей ту же роль, что и главный циркуляционный насос, но в отличие от водного для газового теплоносителя давление в первом контуре может быть не только выше, но и ниже, чем во втором.
Каждый из описанных двух типов АЭС с водным теплоносителем имеет свои преимущества и недостатки, поэтому развиваются АЭС обоих типов. У них имеется ряд общих черт, к их числу относится работа турбин на насыщенном паре средних давлений . Одноконтурные и двухконтурные АЭС с водным теплоносителем наиболее распространены, причем в мире в основном предпочтение отдается двухконтурным АЭС.
Схема принципиальная функционирования.
Ядерный реактор представляет собой устройство, предназначенное для организации и поддержания управляемой цепной реакции деления некоторых тяжелых ядер, в результате которой высвобождается ядерная энергия, преобразуемая в нем в тепловую с последующим использованием ее внешним потребителем.
3, 6 – части высокого и низкого давления турбины;
9 – конденсатный насос;
10 – циркуляционный насос;
11 – подогреватель низкого давления;
13 – питательный насос;
14 – подогреватель высокого давления;
15 – главный циркуляционный насос.
В ядерном реакторе внутриядерная энергия преобразуется в тепловую, которая отводится теплоносителем по трубопроводам первого контура в парогенератор, где через поверхность нагрева тепло передается рабочему телу. Охлажденный теплоноситель с помощью главного циркуляционного насоса (ГЦН) вновь направляется в реактор, и контур замыкается. Рабочим телом служит обычная вода, генерируемая в пар. Пар по трубопроводу рабочего контура направляется в турбогенератор, в котором последовательно тепловая энергия превращается в механическую, а механическая — в электрическую.
Отработанный пар конденсируется в конденсаторе и прокачивается конденсатными насосами через регенеративную систему низкого давления. Далее с помощью питательных насосов вода, пройдя через регенеративную систему высокого давления, вновь поступает в парогенератор.
Такова принципиальная схема так называемых двухконтурных АЭС, наиболее распространенных в настоящее время.
Источник
Как устроены атомные электростанции
Человек ищет энергию везде: в пламени горящих дров и угля, в напоре речного потока, силе ветра и тепле солнечных лучей. В середине прошлого века мы научились использовать энергию, спрятанную в атомных ядрах тяжелых элементов. Сегодня на атомных электростанциях эта невидимая глазу энергия атома превращается в такое привычное нам электричество.
Без мирного атома никак
Мировая экономика немыслима без атомной энергетики. На атомных электростанциях вырабатывается одна десятая всей производимой на планете электроэнергии. Сегодня 192 атомные электростанции работают в 31 стране мира. Как правило, все они имеют по несколько энергоблоков — технологических комплексов оборудования для производства электроэнергии, имеющих в своем составе ядерный реактор. Общее количество таких энергоблоков в мире составляет 451.
На первом месте по количеству АЭС находятся США — 62, на втором Франция — 19, третье место у Японии — 17. Россия занимает пятое место по количеству атомных электростанций. Их у нас 10 с 37 энергоблоками. Общая мощность всех АЭС мира составляет около 392 ГВт.
Атомная энергетика имеет много плюсов. Ключевые — высокая рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, как это происходит на тепловых электростанциях. Однако есть и серьезные минусы. В случае аварии на атомной электростанции продукты деления ядерного топлива, вырвавшиеся из реактора, могут надолго сделать непригодными для жизни большие территории, прилегающие к станции. Еще один минус — это проблема хранения и переработки отработанного ядерного топлива.
Принцип работы атомной электростанции
Использование атомной энергии началось практически одновременно с созданием ядерного оружия. Пока шли военные разработки, начались исследования возможности применения атомной энергии и в мирных целях, прежде всего для производства электроэнергии. Началом мирного использования ядерной энергии принято считать 1954 г., когда в подмосковном Обнинске заработала первая в мире атомная электростанция.
В отличие от ядерной бомбы, при взрыве которой происходит неуправляемая цепная реакция деления атомных ядер с одномоментным высвобождением колоссального количества энергии, в ядерном реакторе происходит регулируемая ядерная реакция деления — топливо медленно отдает нам свою энергию. Тем самым для того, чтобы использовать цепную реакцию деления атома в мирных целях, ученым пришлось придумать, как ее приручить.
Атомная электростанция — это целый комплекс технических сооружений, предназначенных для выработки электрической энергии. Ядерная реакция происходит в самом сердце атомной электростанции — ядерном реакторе. Но само электричество вырабатывает совсем не он.
На АЭС происходит три взаимных преобразования форм энергии: ядерная энергия переходит в тепловую, тепловая — в механическую, а уже механическая энергия преобразуется в электрическую. И для каждого преобразования предусмотрен свой технологический «остров» — комплекс оборудования, где происходят эти превращения. Пройдемся вдоль технологической цепочки и подробно посмотрим, как рождается электричество.
Реактор атомной электростанции представляет собой конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Ядерный реактор можно сравнить с мощным железобетонным бункером. Он имеет стальной корпус и помещен в железобетонную герметичную оболочку.
Эффект Вавилова — Черенкова (излучение Вавилова — Черенкова) — свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде
Пространство, в котором непосредственно происходит реакция деления ядер, называется «активной зоной ядерного реактора». В ее процессе выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель. В большинстве случаев теплоносителем выступает обычная вода. Правда, предварительно ее очищают от различных примесей и газов. Она подается снизу в активную зону реактора с помощью главных циркуляционных насосов. Именно теплоноситель передает тепло за пределы реактора. Он обращается в замкнутой системе труб — контуре. Первый контур нужен для того, чтобы отобрать тепло у разогретого реакцией деления реактора (охладить его) и передать его дальше. Первый контур является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть, преимущественно ядерный реактор.
В активной зоне ядерного реактора находится ядерное топливо и, за редким исключением, так называемый замедлитель. Как правило, в большинстве типов реакторов в качестве топлива применяется уран 235 или плутоний 239.
Для того чтобы можно было использовать ядерное топливо в реакторе, его первоначально помещают в тепловыделяющие элементы — твэлы. Это герметичные трубки из стали или циркониевых сплавов внешним диаметром около сантиметра и длиной от нескольких десятков до сотен сантиметров, которые заполнены таблетками ядерного топлива. При этом в качестве топлива выступает не чистый химический элемент, а его соединение, например оксид урана UO2. Все это происходит еще на предприятии, где ядерное топливо производится.
Для упрощения учета и перемещения ядерного топлива в реакторе твэлы собираются в тепловыделяющие сборки по 150-350 штук. Одновременно в активную зону реактора обычно помещается 200-450 таких сборок. Устанавливают их в рабочих каналах активной зоны реактора.
Именно твэлы — главный конструктивный элемент активной зоны большинства ядерных реакторов. В них происходит деление тяжелых ядер, сопровождающееся выделением тепловой энергии, которая затем передается теплоносителю. Конструкция тепловыделяющего элемента должна обеспечить отвод тепла от топлива к теплоносителю и не допустить попадания в теплоноситель продуктов деления.
В ходе ядерных реакций образуются, как правило, быстрые нейтроны, то есть нейтроны, имеющие высокую кинетическую энергию. Если не уменьшить их скорость, то ядерная реакция со временем может затухнуть. Замедлитель и решает задачу снижения скорости нейтронов. В качестве замедлителя, широко используемого в ядерных реакторах, выступают вода, бериллий или графит. Но наилучшим замедлителем является тяжелая вода (D2O).
Здесь нужно добавить, что по уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые (на тепловых нейтронах) и быстрые (на быстрых нейтронах). Сегодня в мире только два действующих реактора на быстрых нейтронах и оба находятся в России. Они установлены на Белоярской АЭС. Однако использование реакторов на быстрых нейтронах является перспективным, и интерес к этому направлению энергетики сохраняется. Скоро реакторы на быстрых нейтронах могут появиться и в других странах.
Так вот, в реакторах на быстрых нейтронах в замедлителе нет необходимости, они работают по другому принципу. Но и систему охлаждения реактора здесь тоже нужно выстраивать иначе. Вода, применяемая в качестве теплоносителя в тепловых реакторах, — хороший замедлитель, и ее использование в этом качестве в быстрых реакторах невозможно. Здесь могут применяться только легкоплавкие металлы, например ртуть, натрий и свинец. Кроме того, в быстрых реакторах используется и другое топливо — уран-238 и торий-232. Причем уран-238 гораздо чаще встречается в природе, чем его «собрат» уран-235. Строительство атомных электростанций с реакторами на быстрых нейтронах способно значительно расширить топливную базу ядерной энергетики.
Для того чтобы предотвратить попадание нейтронов в окружающую среду, активная зона реактора окружается отражателем. В качестве материала для отражателей часто используют те же вещества, что и в замедлителях. Кроме того, наличие отражателя необходимо для повышения эффективности использования ядерного топлива, так как отражатель возвращает назад в активную зону часть вылетевших из зоны нейтронов.
Вернемся к процессу преобразования ядерной энергии в электричество. Для производства водяного пара на АЭС применяются парогенераторы. Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины.
Применяются парогенераторы на двух- и трехконтурных АЭС. На одноконтурных их роль играет сам ядерный реактор. Это так называемые кипящие реакторы, в них пар генерируется непосредственно в активной зоне, после чего направляется в турбину. В схеме таких АЭС нет парогенератора. Пример электростанции с такими реакторами — японская АЭС «Фукусима-1».
Вода первого контура, циркулирующая через активную зону реактора, омывает тепловыделяющие элементы, нагреваясь при этом до температуры 320-330° С. Но поскольку вода в обычном состоянии при давлении в 1 атмосферу закипает уже при температуре 100°С, то для того чтобы повысить температуру кипения, повышают и давление в первом контуре теплоносителя. В современных реакторах типа ВВЭР (водо-водяной энергетический реактор — они являются основой мировой атомной энергетики) давление в первом контуре достигает 160 атмосфер.
Дальше эта очень горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура. Это контур так называемого рабочего тела, т. е. среды, совершающей работу, преобразуя тепловую энергию в механическую. Эта вода, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому она закипает. Образовавшийся водяной пар под высоким давлением поступает на лопатки турбины.
Турбина и генератор
Пар из парогенератора поступает на турбину, в которой энергия пара преобразуется в механическую работу. В паровой турбине потенциальная энергия сжатого и нагретого водяного пара преобразуется в энергию кинетическую, которая, в свою очередь, преобразуется в механическую работу — вращение вала турбины, а он уже вращает ротор электрогенератора. Теперь механическая энергия превратилась в электрическую.
Прошедший через турбину пар поступает в конденсатор. Здесь пар охлаждается, конденсируется и превращается в воду. По второму контуру она поступает в парогенератор, где снова превратится в пар. Конденсатор охлаждается большим количеством воды из внешнего открытого источника, например водохранилища или пруда-охладителя. С водой первого контура, как мы помним, радиоактивного, паровая турбина и конденсатор не взаимодействуют, это облегчает их ремонт и уменьшает количество радиоактивных отходов при закрытии и демонтаже станции.
Вернемся снова к ядерному реактору. Как же он управляется? Помимо твэлов с топливом и замедлителя в нем находятся еще управляющие стержни. Они предназначены для пуска и остановки реактора, поддержания его критического состояния в любой момент его работы и для перехода с одного уровня мощности на другой. Стержни изготовлены из материала, хорошо поглощающего нейтроны.
Для того чтобы реактор работал на постоянном уровне мощности, необходимо создать и поддерживать в его активной зоне такие условия, чтобы плотность нейтронов была неизменной во времени. Это состояние реактора и принято называть «критическим состоянием», или просто «критичностью».
Когда активная зона сильно разогревается, в нее опускаются управляющие стержни, которые встают между твэлами и вбирают в себя избыточные нейтроны. Если нужно добавить мощности, управляющие стержни снова поднимают. Если же их опустить на всю длину твэлов, то цепная реакция прекратится, реактор будет заглушен.
Кроме того, на случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с избыточным энерговыделением в активной зоне реактора, в каждом реакторе предусмотрена возможность экстренного прекращения цепной реакции. В этом случае в центральную часть активной зоны под действием силы тяжести сбрасываются стержни аварийной защиты.
Что еще есть на АЭС?
После удаления из реактора в твэлах с отработанным ядерным топливом все еще продолжаются процессы деления. В течение длительного периода времени они продолжают оставаться мощным источником нейтронов и выделяют тепло. Поэтому в течение некоторого времени твэлы выдерживают под водой в специальных бассейнах, которые находятся тут же, на атомной электростанции. Если их не охлаждать, они просто могут расплавиться.
После того как их радиоактивность и температура снизятся до значений, позволяющих их перевозить, а для водо-водяных реакторов это три года, твэлы извлекают, помещают в толстостенную стальную тару и отправляют в «сухие хранилища».
Кроме того, если посмотреть на атомную электростанцию со стороны, то ее силуэт, как правило, определяют высокие сооружения башенного типа. Это градирни. Они нужны в случае если невозможно использовать воду для конденсации пара из водохранилища. Тогда на станции применяют оборотные системы охлаждения, ключевым элементом которых являются охладительные башни. Внутри градирен горячая вода распыляется, падая с высоты как в обычном душе. Часть воды при этом испаряется, что и обеспечивает требуемое охлаждение. Благодаря своим внушительным размерам, а некоторые из них достигают высоты 60-этажного дома (например, градирня энергоблока №6 Нововоронежской АЭС), градирни обычно являются самой заметной частью атомной электростанции.
Кроме того, каждая атомная станция имеет еще одну или несколько высоких труб, внешне похожих на дымовые трубы обычных тепловых электростанций. Но дым из них не идет — это вентиляционные трубы, через них выводятся газоаэрозольные выбросы — радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и летучие соединения радиоактивного иода. Но по большей части это радиоактивные изотопы инертных газов — аргон-41, криптон-87 и ксенон-133. Они представляют собой короткоживущие радионуклиды и без ущерба для экологии распадаются за несколько дней или даже часов.
Источник
Работа АЭС. Количество контуров.
Сколько же на АЭС контуров и от чего зависит их количество?
Для начала возьмем обычную тепловую электростанцию:
Вода (синяя линия) подается в котел и превращается там в пар (красная линия). Пар приходит на турбину, вращает её и попадает в конденсатор. В конденсаторе пар превращается в воду (голубая линия), которая затем, после подготовки (подогреватели высокого/низкого давления и деаэратор) снова подается в котёл. Вот этот путь воды от котла до турбины и обратно — и есть один замкнутый контур.
На атомных станциях так делать не очень удобно. Во первых наличие единственного контура не очень благотворно влияет на физику реактора. Вода, превращающаяся из жидкости в пар прямо внутри активной зоны, довольно серьезно влияет на размножение нейтронов. Поэтому одноконтурные кипящие реакторы всегда в управлении сложнее тех, где теплоноситель не меняет своей плотности при прохождении через активную зону.
Также теплоноситель в реакторе может (и будет!) загрязняться. Нейтроны, огромное их количество, будут активировать как саму воду, так и содержащиеся в ней примеси. Также в стенках твэлах, содержащих ядерное топливо, всегда есть микроскопические трещины и поры, через которых иногда очень малая часть продуктов деления проникает в теплоноситель.
Вот вам для наглядности простенькая схема работы РБМК:
Однако одноконтурная схема подкупает своей простотой при строительстве и эксплуатации. Не нужны дорогостоящие парогенераторы, не нужно делать реактор для работы под огромным давлением (для сравнения, давление в одноконтурном РБМК составляет 70-80 атмосфер, а в двухконтурном ВВЭР — 160 атмосфер). Мы просто генерируем пар, отделяем его от воды и направляем на турбину.
Конкретно на РБМК вышеописанные проблемы (сложность управления и загрязнение теплоносителя) решены. Паровой коэффициент реактивности (насколько сильно реактор отреагирует при превращении воды в пар) поддерживается небольшим, а вода постоянно очищается от ненужных примесей, что делает её довольно чистой. Сам, бывало, неаккуратно поливался водой первого контура при ремонтах — жив, цел, чист (проверялся на приборах).
С двухконтурными АЭС всё проще и сложнее одновременно. На примере ВВЭР — вода первого контура нагревается в реакторе, но не закипает. Нагретая, она поступает в парогенератор, где отдает свою энергию воде второго контура, а вот та уже кипит. Дальше по накатанной, пар второго контура уходит на турбину, откуда потом возвращается в парогенератор в виде конденсата.
Схема двухконтурной АЭС:
Источник
Оглавление
Принципиальная тепловая схема 3
Принципиальна тепловая второго контура схема установки К-500-60/1500 4
Принципиальная тепловая схема второго контура установки К-1000-60/1500-1 4
Принципиальная тепловая схема второго контура установки К-1000-60/1500-2 5
Принципиальная тепловая схема второго контура установки К-1000-60/3000 5
Теплообменное оборудование второго контура реактора ВВЭР-1000 6
Паровая турбина 7
Система сепарации и промежуточного перегрева пара 8
Конденсационная установка паровой турбины 9
Подогреватели низкого давления 10
Подогреватели высокого давления 10
Теплофикационная установка 11
Обозначения. Здесь и далее будут использоваться следующие обозначения:
ПУ, ПЭ подогреватель уплотнений и эжекторов
П регенеративный подогреватель
ОД охладители дренажа
ПН питательный насос
Р расширитель продувки парогенератора
СП сетевой подогреватель
СН сетевой насос
ДН дренажный насос
ДНС дренажный насос сетевых подогревателей
КН конденсатный насос
ТП турбопривод питательно насоса
Ктп конденсатор турбопривода
ЦВД цилиндр высокого давления
ЦСД цилиндр среднего давления
ЦНД цилиндр низкого давления
СПП сепаратор перегреватель
ПНД подогреватель низкого давления
ПВД подогреватель высокого давления
ПН питательный насос
БН бустерный насос
СП сальниковый подогрев
БОУ блочная обессоливающая установка
СН коллектор собственных нужд
ОД охладитель дренажа
Принципиальная тепловая схема
Основой проектирования и эксплуатации атомных электростанций является тепловая схема. Тепловая схема АЭС отражает процессы передачи и преобразования энергии. В нее включают оборудования пароводяного тракта с технологическими связями между его элементами и с другим оборудованием электростанции.
Принципиальная тепловая схема отражает суть технологического процесса . Такие схемы разрабатывают на стадии принятия основополагающих решений при проектировании АЭС. Принципиальная тепловая схема является основой для теплового расчета АЭС. Для решения различных задач, например, выдачи турбостроительному заводу технического задания на проектирование новой машины, выбора мощности и параметров основных агрегатов, установления тепловой экономичности АЭС в условиях иного в сравнении с заводским расчетом вакуума в конденсаторе и др.
Для реактора ВВЭР-1000 существует 4 принципиальных тепловых схемы второго контура, зависящие от типа используемой турбоустановки: К-500-60/1500, К-1000-60/1500-1, К-1000-60/1500-2 или К-1000-60/3000. Рассмотрим их по порядку.
Принципиальна тепловая второго контура схема установки К-500-60/1500
На схеме: 2 парогенератор; 9 Теплообменник; 10 доохладитель; 11 ионообменный фильтр; 12 Турбина; 13 Электрический генератор; 14 Блочная обессоливающая система.
Давление пара перед турбиной составляет 5,9 МПа, на входе в цилиндр среднего давления 1,08 МПа
Принципиальная тепловая схема второго контура установки К-1000-60/1500-1
Давление пара перед турбиной составляет 5,9 МПа, температура 274,3 ˚ C , Давление пара перед Цилиндром низкого давления 1,1 МПа. Перед конденсатором пар имеет давление 0,004 МПа и температуру 15 ˚ C .
Принципиальная тепловая схема второго контура установки К-1000-60/1500-2
В установке К-1000-60/1500-2 Цилиндр высокого давления объединен с цилиндром среднего давления. По параметрам давления и температуры в системе данная установка аналогична предыдущей установке
Принципиальная тепловая схема второго контура установки К-1000-60/3000
Турбоустановка К-1000-60/3000 схожа с установкой К-1000-60/1500 по составу оборудования, но с некоторыми отличиями. Эта турбина имеет пять цилиндров один высокого давления и четыре низкого давления. Между ними расположены два совмещенных сепаратора-пароперегревателя СПП.
Теплообменное оборудование второго контура реактора ВВЭР-1000
Парогенератор
Парогенераторная установка обязательный элемент любой двухконтурной АЭС, разделяющий первый и второй контуры и относящийся как тому, так и другому.
Тепловой баланс парогенераторной установки АЭС с водоводяным реактором:
расход теплоносителя, кг/с;
теплоемкость теплоносителя, кДж/(кг*град);
температура теплоносителя на входе в парогенератор, град;
температура теплоносителя на выходе из парогенератора, град;
энтальпия насыщенного пара, кДж/кг;
энтальпия питательной воды, кДж/кг.
При одинаковой тепловой нагрузке расход теплоносителя обратно пропорционален разности энтальпий воды на входе и выходе из парогенератора. Уменьшение расхода теплоносителя при сохранении прежней его скорости позволяет уменьшить стоимость трубопроводов и главного циркуляционного насоса, а следовательно, цену одного производимого киловатта мощности. Но большая разность температур приведет к уменьшению тепловой экономичности станции, вследствие уменьшения температуры на выходе.
Невысокие значения минимального температурного напора приводят для мощных АЭС с водо-водяными реакторами к образованию столь большим поверхностям нагрева парогенератора, что изготовление его в виде одного агрегата становится не возможным. Также невозможно создать ГЦН на такую производительность. Тем не менее, существует тенденция к укрупнению парогенераторов. Повышение параметров теплоносителя позволяет увеличить давление пара в парогенераторе и повысить экономичность АЭС.
Поверхность нагрева парогенератора система змеевиков малого диаметра, по которым течет теплоноситель как среда со значительно большим давлением. Существует два варианта парогенератора вертикальный и горизонтальный. Для АЭС с ВВЭР принята горизонтальная конструкция парогенератора.
Горизонтальный парогенератор имеет большую площадь зеркала испарения и существенно меньшую скорость пара на выходе в паровой объем. Однако, высота парового объема у него ограничена, так как определяется диаметром корпуса, а он в свою очередь железно дорожными габаритами.
Мощность горизонтального парогенератора ВВЭР-1000, равная 250 МВт, по условиям железнодорожных габаритов является предельной. Поверхность теплообмена парогенератора проектируется с запасом 10-15%.
Для поддержания солевого режима предусмотрено выведение части воды из парогенератора в виде непрерывной и периодической продувок с использование соответствующих штуцеров
Технические характеристики парогенератора ВВЭР-1000
Источник
ЛЕКЦИЯ 3
Технологическая схема АЭС с реактором РБМК
Технологическая схема АЭС с реактором ВВЭР
Рисунок 2.1 Технологическая схема АЭС с реактором типа ВВЭР
В реакторе ВВЭР в качестве теплоносителя и замедлителя используется вода под давлением, созданным главным циркуляционным насосом ГЦН, которая переносит тепло из активной зоны реактора ЯР в парогенератор. Число реакторных контуров для реактора ВВЭР – 1000 – 4 и столько же ГЦН. ГЦН должен обеспечивать циркуляцию теплоносителя в нормальных и аварийных режимах.
Для компенсации температурных изменений объёма воды в одной из реакторных петель устанавливается компенсатор объёма КО с электронагревателем (ЭН). Электронагреватели обеспечивают испарение воды в КО и поддержание заданного давления пара над уровнем воды в реакторном контуре.
Для предотвращения вскипания теплоносителя, при аварийном положении АЭС, электронагреватели должны быть обеспечены электроснабжением, допускающим перерывы питания только на время включения резервного питания.
В нормальном режиме работы реактора необходима подпитка первого контура, которая осуществляется подпиточным насосом ППН, забирающим воду из деаэратора. Кроме того, для регулирования количества тепловых нейтронов, то есть регулирования мощности реактора, используют в качестве замедлителя борированную воду, которая подаётся насосами НБК 1,2. Подпиточный насос используется для подпитки первого контура в режиме «малых течей».
Перегрузка и выдержка тепловыделяющих элементов (ТВЭЛ) осуществляется в бассейне под слоем воды (БТВЭЛ). Для охлаждения воды предусматриваются теплообменник ТО и насос НО ТВЭЛ. В эту систему может быть подана борированная вода. Этот насос должен быть обеспечен бесперебойным питанием.
В режиме нормальной эксплуатации реактора первостепенную роль играет система управления и защиты реактора (СУЗ). Механизмы управления СУЗ являются важнейшими элементами системы регулирования и обеспечения ядерной безопасности. Поэтому электропривод механизмов СУЗ требует особо надёжного питания.
Безопасность АЭС обеспечивают кроме систем нормальной эксплуатации локализующие системы и система аварийного охлаждения активной зоны реактора – САОЗ. Назначение двух последних систем – не допустить распространения радиоактивности за пределы герметичных помещений АЭС даже при полномразрыве главного циркуляционного контура (максимальная проектная авария – МПА).
Аварийное охлаждение зоны обеспечивается тремя независимыми системами. Состав одной из систем мы и рассмотрим.
Она включает баки аварийного запаса борного раствора АЗБР, теплообменник расхолаживания ТОР, спринклерные насосы СН, насосы аварийного расхолаживания низкого и высокого давления НАР. При нарушении герметичности реакторного контура и небольшой течи включаются НАР, подающие борированный раствор в контур. Если имеет место МПА и давление в реакторе падает, то для предотвращения вскипания воды в реакторе в пространство над активной зоной и под неё автоматически подаётся вода из гидроаккумулирующих ёмкостей ГАЕ. Одновременно подаётся борированная вода в спринклерные установки. Пар конденсируется в струях воды от спринклерных установок, предотвращая повышение давления в герметичной оболочке. В приямках собирается вода, охлаждается в теплообменнике ТОР и вновь заканчивается в контур и в спринклерные установки до полного расхолаживания реактора. Электрооборудование этой системы САОЗ допускает перерыв питания до 30-60 сек.
Технологическая схема второго контура АЭС практически не отличается от аналогичной схемы КЭС. Назначение системы – обеспечение работы турбин за счёт производства пара в парогенераторе (ПГ), его срабатывания на турбине; конденсации пара и последующей подачи воды в парогенератор. В реакторах ВВЭР-1000 рабочий питательный насос имеет турбопривод. Кроме рабочего предусмотрен пускорезервный насос с электроприводом, имеющий надёжное питание.
На АЭС имеется развитая система технического водоснабжения. Эта система используется как для охлаждения главного конденсатора с помощью циркуляционного насоса, так и для других ответственных потребителей (теплообменников САОЗ, теплообменника выдержки ТО и т.д.) с помощью специальных насосов, требующих надежного питания.
Высокой надёжности электроснабжения требуют противопожарные насосы.
1. Практически отсутствует влияние на экологию, так как имеет место только тепловое загрязнение гидросферы и атмосферы.
2. Относительно высокий КПД ≈36%.
3. Малый объем горючего и длительный (3 года) срок работы до его перезагрузки.
1. Сложность захоронения отходов.
Реакторы РБМК имеют канальное исполнение, теплоносителем является вода, замедлителем – графит. Мощность реактора определяется числом параллельных технологических каналов (рисунок 2.2.).
Вода по индивидуальным трубопроводам (836 каналов для одной половины РБМК – 1000) подаётся к технологическим каналам 5 реактора 6, где нагревается до температуры насыщенного пара. Пароводяная смесь по индивидуальным трубопроводам поступает в барабаны – сепараторы 11. Пар из сепараторов подаётся на турбину. Конденсат от турбины питательным насосом опять подаётся на сепараторы 11, откуда главным циркуляционным насосом ГЦН 13 вновь подаётся в реактор.
Таким образом, АЭС с РБМК — одноконтурная, пар, полученный в сепараторе, имеет слабую радиоактивность. Система реакторного контура РБМК, называемая контуром многократной циркуляции (МПЦ ), состоит из двух самостоятельных частей, в каждую из которых входят два барабана – сепаратора, трубопровод воды, всасывающий 12 и напорный 15 коллекторы, ГЦН 13, разделительные групповые коллекторы 10, а также запорная арматура 14.
Кроме контура МПЦ в реакторе существуют замкнутые автономные системы охлаждения каналов СУ3 , состоящие из теплообменника 3, насоса 2, и бака аварийного запаса воды 4. Аналогичные системы охлаждения предусмотрены для кольцевого бака биологической защиты и металлоконструкций, а также бассейна выдержки и перегрузки тепловыделяющих элементов 19, 20, 22. Насосы этих систем требуют надёжного электроснабжения от автономных источников.
Система аварийного охлаждения реакторов ( САОР ) канального типа состоит из двух подсистем: основного и дополнительного расхолаживания. Каждая подсистема состоит из трёх независимых групп (на рисунке показана одна группа).
Основная подсистема САОР состоит из гидроаккумулирующих ёмкостей 21, вода в которых находится под давлением азота (10 Мпа ), превышающим давление теплоносителя в контуре МПЦ. В эту систему вода может подаваться аварийным питательным насосом. Эта подсистема включается в работу при МПА. При этом открываются задвижки 18 и вода из ёмкостей 21 подаётся в групповые коллекторы 10, а из них в технологические каналы. Электроснабжение быстродействующих задвижек должно обеспечиваться бесперебойным питанием.
Подсистема длительного расхолаживания включается после запуска аварийных источников питания и обеспечивает подачу обессоленной воды с помощью насосов 17 и 24 из барбатера 7 и бака 23 в реактор.
Для снижения давления в бассейне – барботере используется спринклерная система (8, 9, 25).
Рисунок 2.2 Технологическая схема АЭС с реактором типа РБМК
Электронасосы 17, 20, 24 требуют надёжного электропитания.
Технологическая схема турбоустановки почти не отличается от схем КЭС.
1. Практически отсутствует влияние на экологию.
2. Низкие параметры теплоносителя, следовательно, менее жесткие
Требования к технологии производства основных элементов ППУ.
3. Возможность ремонта каналов без остановки АЭС в целом.
4. Возможность наращивания мощности блока путем увеличения числа каналов.
1. Недостаточно высокая надежность (Чернобыльская АЭС).
2. Сложность захоронения отходов.
2.4. Технологическая схема АЭС с реакторами типа БН
АЭС с реакторами на быстрых нейтронах (БН), реакторами-размножителями, используются для получения тепла и электроэнергии, а также для производства ядерного топлива. Технологическая схема энергоблока такой АЭС представлена на рисунке 2.3. Реактор типа БН имеет активную зону, где происходит реакция с выделением потока быстрых нейтронов. Эти нейтроны воздействуют на элементы из урана U-238, который в ядерных реакциях не используется, и превращают его в плутоний Р к –239. Последний может быть использован на АЭС в качестве ядерного горючего.
Теплоносителем в реакторе типа БН, как правило, используется жидкий натрий, который бурно реагирует с водой и паром. Поэтому, чтобы избежать при авариях контакта радиоактивного натрия первого контура с водой или водяным паром, схему АЭС выполняют трехконтурной (с жидкометаллическим промежуточным контуром).
Первый контур предназначен для снятия тепла с реактора и передачи его теплоносителю второго контура. Первый циркуляционный контур состоит из активной зоны и зоны воспроизводства (реактора 1) теплообменников 2 и насосов 3, связанных между собой каналами, по которым циркулирует теплоноситель (радиоактивный натрий).
На действующих и строящихся АЭС с реакторами, охлажденными жидким металлом, применяются два конструкционных варианта первого контура. В одном варианте (смотри рисунок 2.3) контур циркуляции теплоносителя состоит из нескольких петель и оборудование располагается в индивидуальных корпусах, соединенных трубопроводами. Такая компоновка называется петлевой или контурной. Во втором варианте все оборудование первого контура размещается в едином прочном корпусе. Это интегральная компоновка (баковая, погруженная). По второму варианту выполнены, в частности, установки типа БН-600.
Циркуляция теплоносителя первого контура в установках типа БН-600 осуществляется тремя главными циркуляционными насосами, с напора которых по напорным трубопроводам натрий поступает в напорную камеру реактора, где поток распределяется по тепловыделяющим сборкам (ТВС) активной зоны и зоны воспроизводства.
Пройдя активную зону реактора, натрий с температурой С поступает в шесть параллельно включенных промежуточных теплообменников через кольцевой зазор в защите вокруг активной зоны.
Рисунок 2.3. Технологическая схема АЭС с реактором типа БН
Натрий первого контура проходит сверху вниз в межтрубном пространстве теплообменников и выходит при температуре С в три переливные камеры, откуда забирается насосами, которые подают его обратно в реактор.
Нормальную работу первого контура реакторов типа БН обеспечивают системы очистки, приготовления, хранения, подачи и приема натрия, газовая система, система обогрева и т.д.
Высокая химическая активность натрия по отношению к кислороду воздуха обусловила применение инертного газа, исключающего непосредственный контакт расплавленного натрия с воздухом. Все натриевые системы выполняются герметичными, и газовые полости над теплоносителем заполняются осушенным и очищенным от кислорода газом, не взаимодействующим с натрием при рабочих температурах (аргон, гелий).
В состав газовой системы кроме газовых объемов реактора, насосов входят газовые баллоны-ресиверы объемом 4-5 м 3 при давлении до 20 МПа, ловушки паров натрия, устанавливаемые на газовых линиях, система очистки газа.
Жидкометаллические теплоносители имеют температуру плавления С, поэтому для обеспечения разогрева контуров перед заполнием теплоносителем и поддержания его в горячем состоянии служит система газового разогрева, включающая газодувки, подогреватели, а также внутренние и наружные камеры обогрева корпуса реактора и другого оборудования. Обогрев вспомогательных систем с натрием осуществляется, как правило, электронагревательными элементами.
Параметры первого контура контролируются системой, включающей в себя ионизационные камеры, датчики температуры, давления, электромагнитные расходомеры, датчики числа оборотов ГЦН, тока и напряжения на электродвигателях ГЦН и на электромагнитных насосах. Главные циркуляционные насосы обслуживаются масляной системой, в состав которой входят насосы, холодильники, фильтры, трубопроводы с арматурой, система управления и контроля.
Все эти системы, обеспечивающие нормальную работу первого контура, требуют надежного электроснабжения.
Второй (промежуточный) контур предназначен для передачи тепла от первого контура рабочему телу в парогенераторах 5 (смотри рисунок 2.3) и пароперегревателях 4. В состав второго контура входят, кроме парогенераторов 5 и пароперегревателей 4, циркуляционные насосы 7 и вспомогательные системы, аналогичные системам первого контура.
В установках типа БН теплоноситель (нерадиоактивный натрий) с помощью насосов 7 второго контура подается в теплообменники 2 натрий-натрий, нагревается в них до С, затем направляется в пароперегреватели 4 и парогенераторы 5, где, отдавая тепло рабочему телу, охлаждается до С и поступает на вход циркуляционных насосов 7. С целью исключения перетечек активного натрия в неактивный (в промежуточных теплообменниках 2) давление во втором контуре больше, чем в первом. В системе компенсации давления используется аргон.
Назначение и состав третьего (пароводяного) контура такие же как у любой тепловой станции. Питательная вода поступает из главного конденсатора 10 (смотри рисунок 2.3) на всас конденсатного насоса 11 и далее в деаэратор 8. Питательным насосом 6 вода забирается из деаэратора и подается на парогенератор 5 (испаритель), где отбирает тепло у теплоносителя второго контура и превращается в пар. Пар из парогенератора поступает в пароперегреватель 4 и далее на турбину 9, где и срабатывается, вращая последнюю. Отработавший пар из турбины сбрасывается в главный конденсатор, где охлаждается, конденсируется и превращается в питательную воду.
Турбина связана муфтой М с генератором G, в котором механическая энергия превращается в электрическую энергию. Электрическая энергия подается на потребители собственных нужд (СН) и через повышающий трансформатор Т на открытое распределительное устройство (ОРУ).
Основное достоинство АЭС с реакторами типа БН- их способность воспроизводить ядерное горючее. Эти станции, как и другие АЭС, не имеют выбросов дымовых газов и не имеют отходов в виде золы и шлаков.
· большие удельные тепловыделения в охлаждающую воду;
· низкий КПД ;
· необходимость надежного захоронения радиоактивных отходов.
2.5.Структура электрической части АЭС
Специфика электрической части аналогична КЭС. Центры электрических нагрузок располагаются на значительном расстоянии от АЭС, поэтому станция выдаёт электроэнергию на высоких и сверхвысоких напряжениях. Для удобства наращивания мощности, повышения надёжности используется блочный принцип построения.
Мы видим, что особенность технологического процесса на АЭС предъявляет специфические требования к питанию электрооборудования.
Все потребители АЭС образуют, как и на КЭС, систему собственных нужд, которая в нормальных режимах получает питание от трансформатора собственных нужд основного (ОТСН). Этот трансформатор получает питание от генератора станции. Для обеспечения резервирования питания собственных нужд применяют резервные трансформаторы (РТСН), получающие питание от шин среднего напряжения своей или соседней ЭС.
Рисунок 2.4. Структурная схема электрической части АЭС
В системе собственных нужд для обеспечения надёжного и безопасного функционирования технологического оборудования выделяют 3 подсистемы электроснабжения потребителей собственных нужд:
а) система шин нормальной эксплуатации (С.Ш.Н.Э). От этой системы шин получают питание потребители, не предъявляющие повышенных требований к надёжности электроснабжения, допускающие перерывы питания на время автоматического ввода резервного питания после срабатывания защиты реактора. Эти потребители относятся к потребителям 3 группы (по ПУЭ) потребителей 1 категории. К ним относятся конденсатные, циркуляционные и сетевые насосы, ГЦН с большой инерционностью, насосы технической воды неответственных потребителей, дренажные насосы и т.д.)
б) система шин надёжного питания, для потребителей 2 группы (С.Ш.Н.П. – 2 группы). От этой системы шин получают питание потребители, требующие повышенной надёжности питания и допускающие перерывы питания на время, определяемое условиями аварийного расхолаживания (десятки секунд – десятки минут) и требующие обязательного питания после срабатывания АЗ реактора. К ним относят: электрооборудование САОЗ, САОР, спринклерные насосы, насосы борного регулирования, аварийные питательные насосы, противопожарные насосы, отдельное электрооборудование турбоагрегата и систем биологической и технологической дозиметрии. Для потребителей этой группы в аварийном режиме предусматривается электроснабжение от специальных автономных источников, не связанных с сетью энергосистемы, которые должны обеспечивать питание этих потребителей при МПА и обесточении основных источников электроснабжения. В качестве аварийных источников используются на АЭС автоматизированные дизель генераторы.
в) система шин надёжного питания для потребителей 1 группы (С.Ш.Н.П. – 1 группы). От этой системы шин получают питание потребители, не допускающее перерыв питания более чем на доли секунды во всех режимах, включая режим полного исчезновения напряжения переменного тока от ОТСН и РТСН, и требующие обязательного питания после срабатывания АЗ реактора. К этой группе относятся: КИП и автоматика защиты реактора; приборы технологического контроля; некоторые системы дозиметрии; электропривод быстродействующих клапанов и отсечной арматуры, которая локализует и обеспечивает ликвидацию аварии, часть аварийного освещения; электромагнитных приводов СУЗ, ГЦН с малой инерционностью, а также отдельные насосы турбоагрегата.
В качестве аварийных источников питания для этой группы используют аккумуляторные батареи со статическими преобразователями электроэнергии (выпрямители – С.П.Э.В, инверторы –С.П.Э.И).
1. Общие вопросы производства электроэнергии на АЭС.
2. Технологическая схема АЭС с реакторами типа ВВЭР.
3. Технологическая схема АЭС с реакторами РБМК.
4. Технологическая схема АЭС с реакторами типа БН.
5. Структура электрической части АЭС.
ТЕМА: Основное оборудование электрической части электростанций
Источник