Меню

Оборудование с индуктивной нагрузкой



Индуктивная нагрузка в цепи постоянного тока

Индуктивная нагрузка в цепи переменного тока

Подключим к сети переменного напряжения U = Umsincot

катушку индуктивности
L
с малым активным сопротивлением
R =
О (рис. 14.6). Когда по катушке идет переменный ток, в ней возникает ЭДС самоиндукции, которая по закону Ленца противодействует приложенному напряжению:

Решение этого дифференциального уравнения относительно тока имеет вид:

Рис. 14.7. Векторная диаграмма при индуктивной нагрузке

Видно, что в цепи с индуктивной нагрузкой ток отстает по фазе от напряжения на 90° (рис. 14.7), поэтому средняя мощность, выделяющаяся на чисто индуктивной нагрузке, равна нулю:

Сопротивление индуктивности переменному току на основании закона Ома

Видно, что постоянному току (со = 0) чистая индуктивность L

не оказывает сопротивления (
Хь
= 0), а ее сопротивление переменному току растет пропорционально частоте.

Рис. 14.8. Омическая, емкостная и индуктивная нагрузки в цепи переменного тока

Рис. 14.9. Векторная диаграмма для последовательной цепи переменного тока

Рассмотрим цепь переменного тока, содержащую последовательно соединенные нагрузки трех видов (рис. 14.8). Для цепи постоянного тока ее полное сопротивление определялось бы как сумма сопротивлений всех последовательно включенных составляющих.

В последовательной цепи переменного тока общим для всех нагрузок цепи является ток, а напряжения на каждом из элементов цепи сдвинуты по фазе относительно тока: напряжение на активной нагрузке совпадает по фазе с током, напряжение на емкости отстает от тока на 90°, а напряжение на индуктивности опережает ток по фазе на 90°.

Поэтому при определении полного сопротивления электрической цепи, представленной на рис. 14.8, необходимо учитывать фазовые соотношения между током и напряжением, зависящие от вида нагрузки.

Рассчитать ток в такой цепи можно с помощью векторной диаграммы, представленной на рис. 14.9. Из нее видно, что

Поскольку амплитуды напряжений связаны с амплитудой тока соотношениями UR-ImR, Uc— ImXc, UL-ImXL,

то после подстановки получим

Теперь можем определить полное сопротивление Z (импеданс)

последовательной цепи переменному току, учитывая формулы (14.5) и (14.7):

Видно, что импеданс Z

рассматриваемой цепи зависит не только от параметров нагрузок
R, С
и
L,
но и от частоты со переменного напряжения. На рис. 14.10 приведены графики зависимости сопротивлений разных нагрузок от частоты переменного тока.

Рис. 14.10. Зависимость активного. индуктивного XL,

емкостного
Хс
и полного
Z
(пунктир) сопротивлений цепи от частоты тока

Импеданс принимает наименьшее значение, равное активной нагрузке R

, при со
L
=-. В этом случае сила тока

в цепи максимальна и в цепи наступает явление электрического резонанса. Поэтому частота сорез — Д— , на которой

наблюдается это явление, называется резонансной частотой

данной цепи. При этом
Z = R,
а сдвиг фаз между током и напряжением ф = 0, т.е. на этой частоте цепь ведет себя как чисто активная нагрузка
R.

Индуктивность в цепи постоянного тока

Для лучшего понимания происходящих процессов в катушке, рассмотрим, что происходит в катушке при подаче на нее постоянного напряжения.

При подключении источника питания к катушке в ней начинает протекать ток, который создает вокруг неё магнитное поле. Магнитные силовые линии поля распространяются через витки катушки наружу пересекая их, и образуют при этом ЭДС самоиндукции. Эта ЭДС, согласно правилу Ленца, будет препятствовать мгновенному нарастанию тока в катушке. Нарастание тока происходит постепенно, по экспоненциальному закону. Через небольшой промежуток времени переходной процесс заканчивается, и ток достигает своего нормального значения. Продолжительность нарастания тока в секундах определяется по формуле:

где L — индуктивность катушки в генри , а R — общее сопротивление всей цепи в омах . Если, к примеру, индуктивность катушки L=0,6 Г, а сопротивление цепи R=60 Ом, тогда длительность переходного процесса будет равна: t=3•0,6/60=0,03 сек.

При отключении батареи от катушки индуктивность тоже происходит переходный процесс (такой опыт с первичной обмоткой трансформатора показан на странице «Электромагнетизм» рис.е). В этом случае силовые магнитные линии будут приближаться к центру катушки опять пересекая ее витки. Создается ЭДС самоиндукции, которая уже направлена не против тока, а (опять же по правилу Ленца) совпадающая с направлением прерванного тока.

Если катушка имеет большую индуктивность (в нашем опыте катушкой является первичная обмотки трансформатора с большим количеством витков и значительным железным сердечником) и через нее протекал большой ток, то тогда ЭДС самоиндукции, появляющая на концах катушки индуктивности, может достигать величины во много раз больше напряжения источника питания. Это объясняется тем, что при размыкании питающей сети энергия, запасенная в магнитном поле катушки, не исчезает, а превращается в ток. Напряжение между концами катушки индуктивности может достигать таких значений, которое способно привести к пробою между обмотками, а так же выводу из строя полупроводниковых приборов. Это надо надо учитывать на практике при работе с приборами, имеющие катушки с большой индуктивностью через которые проходит значительный ток.

Виды энергии

Ниже представлены основные виды нагрузок, которые используются в повседневной жизни. Они могут быть как в бытовых приборах, как и в различных двигателях или датчиках.

Активная

Для данной работы используется закон Ома, который выполняется в каждую секунду времени и схож с правилом для переменного тока. Такой тип применяется в лампах для освещения или в электроплитах.

Источник

Компенсация реактивной мощности. Виды и нагрузки. Применение

Компенсация реактивной мощности — в жилых помещениях обычно установлен один счетчик электроэнергии. Принято считать, что расходуется только активная часть электроэнергии. Это не совсем правильно, так как существует еще такой показатель, как реактивная мощность, которую можно охарактеризовать задержкой между фазными синусоидами тока и напряжения в сети питания.

Компенсация реактивной мощности

Показателем расхода реактивной мощности считается коэффициент мощности. Он равен косинусу угла между напряжением и током. Коэффициент мощности нагрузки рассчитывается как отношение расходуемой активной мощности к общей мощности:

сos (ф) = P / S

Таким показателем характеризуют реактивную мощность генераторов, электродвигателей и всей сети. В современных квартирах имеется много различных бытовых устройств, которые при функционировании сдвигают фазу напряжения. Но, доля реактивной мощности, потребленной бытовыми электрическими устройствами намного меньше, чем оборудованием промышленных предприятий. По этой причине при расчете расхода электроэнергии этой частью энергии пренебрегают.

Компенсация реактивной мощности в цепях потребителей на промышленных предприятиях является необходимостью, иначе это будет оказывать негативное влияние на энергосистемы, выраженное в нагревании обмоток трансформаторов в пиковые часы, нагреве воздуха вокруг линии электропередач и других отрицательных явлений.

Емкостная и индуктивная нагрузка

Если рассмотреть простой потребитель электроэнергии в виде лампочки или нагревателя, то мощность, которая характеризует это устройство (указана в инструкции), будет равна произведению тока и напряжения на этом устройстве. Но, если в конструкции устройства находится, например, трансформатор, либо другие элементы, имеющие индуктивность или емкость, то мощность определяется иначе.

Такие элементы в устройствах имеют специфические свойства. В них электрический ток по фазе отстает от напряжения, либо опережает его, то есть, фаза сдвигается. В таком случае к обычному расчету потребляемой мощности необходимо добавить коэффициент мощности.

Читайте также:  Перевозка оборудования из европы

Если векторы активной и реактивной мощности сложить между собой, то в результате получится полная мощность потребления. На графике она изображена в виде гипотенузы треугольника. На практике, чем меньше угол наклона гипотенузы (полной мощности), тем лучше.

Kompensatsiia reaktivnoi moshchnosti grafik

Q – реактивная мощность, Р – активная мощность, S – полная мощность.

Полному равенству активной и полной мощности мешает реактивная составляющая мощности, которую называют паразитной. Она отрицательно влияет на работу линии электропередач и трансформаторы подстанции, которые могут перегреваться.

Эту проблему решает компенсация реактивной мощности, которая снижает угол φ, и приближает коэффициент мощности к единице. Для обеспечения такой компенсации необходимо увеличить вектор реактивной мощности настолько, чтобы появился резонанс токов, при котором доля реактивной мощности значительно снизится. Простым способом решения этой задачи является подключение конденсаторов необходимой емкости в автоматическом режиме.

Сегодня существуют системы, удерживающие коэффициент мощности в пределах 0,9-1. Идеального результата добиться трудно, так как подключение емкостей происходит ступенчато. Однако эффект экономии от этого получается неплохой. Такие устройства имеют интеллектуальные алгоритмы, действующие автоматически, без настроек. Достижения науки в области информационных технологий позволяют достичь равномерного включения конденсаторов. Время реакции приборов снижено до минимума, вспомогательные дроссели уменьшают перепад напряжения при процессах перехода.

Система управления питанием промышленного предприятия выполнена в виде щита эргономичной компоновки. Он обеспечивает работу оператора для быстрого принятия решения в аварийных случаях.

Kompensatsiia reaktivnoi moshchnosti oborudovanie

Простое устройство, с помощью которого обеспечивается компенсация реактивной мощности, состоит из металлического шкафа с контрольной панелью управления на лицевой части. Внизу шкафа размещены батареи конденсаторов. Они имеют немалый вес, поэтому и размещаются снизу.

Вверху расположены приборы контроля, показывающие различные параметры сети, в том числи и коэффициент мощности. Имеется аварийная индикация, переключатель работы с ручного режима на автоматический. Микропроцессор устройства сравнивает показания датчиков и выдает сигналы управления на исполнительные устройства. Такие механизмы выполнены на основе мощных тиристоров, поэтому их работа не создает шума, и имеет высокое быстродействие.

Виды компенсации реактивной мощности

  • Постоянная (индивидуальная) компенсация . При этом индуктивная мощность компенсируется на месте возникновения, что приводит к уменьшению нагруженности проводов.
  • Групповая компенсация . В ней по аналогии с постоянной компенсацией для нескольких индуктивных нагрузок подключается общая батарея конденсаторов. Разгружается электрическая сеть.
  • Централизованная компенсация . При ней некоторое количество конденсаторов подключается к групповому или основному распределительному щиту. Такой метод используют чаще всего в больших системах с изменяемой нагрузкой. Управление этой емкостной установки осуществляет электронный контроллер, анализирующий расход реактивной мощности. Такие регуляторы производят коммутацию конденсаторов.

Kompensatsiia reaktivnoi moshchnosti vidy

Определение емкости конденсаторов

На предприятиях промышленности реактивную мощность можно определить по числу работающих устройств с учетом их характеристик, сдвигающих фазу. Например, асинхронный двигатель, который чаще всего имеет место в приводах механизмов на заводе, наполовину загруженный, имеет коэффициент мощности 0,73, светильник люминесцентного типа 0,5. Коэффициент мощности сварочного аппарата находится в интервале 0,8-0,9, печь дуговая 0,8.

По таблицам можно найти эти параметры для любого оборудования. Такая информация является базовой. На ее основе вносятся корректировки путем отключения и добавления конденсаторов.

Компенсация реактивной мощности в квартире

Электрические устройства домашней бытовой сети имеют активное, емкостное и индуктивное сопротивление. Для них подходят все, рассмотренные выше, формулы расчета мощности. Это создает дополнительную нагрузку на электропроводку в квартире.

Эти показатели не учитываются в старых электросчетчиках индукционного типа. Некоторые новые модели приборов учета могут фиксировать их. Это дает возможность произвести точный анализ ситуации нагрузки тока и теплового воздействия на изоляцию проводов при эксплуатации большого числа потребителей. Емкостное сопротивление у бытовых устройств имеет малую величину и не учитывается электросчетчиками.

Компенсация реактивной мощности в таких случаях заключается во включении в электрическую цепь батарей конденсаторов, которые способны погасить индуктивную составляющую мощности. Конденсаторы должны включаться в определенный момент на некоторый промежуток времени.

Такие устройства компенсации имеют большие размеры, и больше подходят для промышленных целей в комплексе с автоматической системой. Они не уменьшают расход активной мощности и не сокращают оплату за электроэнергию.

Чудо-приборы

В интернете и в торговой сети встречается множество рекламируемых устройств, которые якобы снижают реактивную мощность, и очень сильно экономят электрическую энергию, что создаст колоссальное снижение денежных затрат. Однако, как показывает практика, такие устройства являются всего лишь мифом, и не могут экономить электроэнергию.

Одним из таких приборов является «Saving Box». Его возможности и технические данные используются в качестве рекламы и не соответствуют действительности. Такая реклама построена на обмане покупателей.

Компенсация реактивной мощности и ее необходимость

Реактивная составляющая мощности снижает показатели функциональности энергетической системы. Реактивные токи генераторов повышают потребление топлива, потерю энергии в приемниках и подводящих сетях.

Реактивная энергия создает дополнительную нагрузку на линии электропередач. В связи с этим необходимо увеличивать поперечное сечение жил кабелей и проводов. Как следствие, повышаются затраты на электропроводящие материалы.

Основными нагрузками, потребляющими реактивную мощность, являются:
  • Асинхронные электродвигатели, расходующие около 40% общей мощности, вместе с бытовыми нуждами.
  • Линии электропередач (расходуют около 7%).
  • Преобразователи (10%).
  • Электрические печи (8%).
  • Трансформаторы (35%).

Наиболее эффективным методом уменьшения расхода реактивной мощности является использование устройств, с помощью которых проводится компенсация реактивной мощности. Такими устройствами являются конденсаторные установки.

Источник

Что такое активная и реактивная мощность переменного электрического тока?

Содержание

  1. Мощность в цепи переменного электрического тока
  2. Понятие активной мощности
  3. Понятие реактивной мощности
  4. Понятие полной мощности. Треугольник мощностей
  5. Как измеряют cosφ на практике

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую ( световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

Читайте также:  Контейнер элемент транспортного оборудования который

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах ( Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах ( Вт), а в вольт-амперах реактивных ( Вар).

Рассчитывается по формуле:

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной ( емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле ( в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ ( читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 ( если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

ВАЖНО! Полная мощность измеряется в вольт-амперах ( ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Источник

Что такое индуктивная и емкостная нагрузка

Термины «емкостная нагрузка» и «индуктивная нагрузка», применительно к цепям переменного тока, подразумевают определенный характер взаимодействия потребителя с источником переменного напряжения.

Грубо это можно проиллюстрировать следующим примером: подключив к розетке полностью разряженный конденсатор, в первый момент времени мы будем наблюдать практически короткое замыкание, тогда как подключив к той же самой розетке катушку индуктивности, в первый момент времени ток через такую нагрузку окажется почти нулевым.

Так происходит потому, что катушка и конденсатор взаимодействуют с переменным током принципиально по разному, в чем и заключается ключевое различие между индуктивной и емкостной нагрузками.

Емкостная нагрузка

Говоря о емкостной нагрузке, имеют ввиду, что она ведет себя в цепи переменного тока подобно конденсатору.

Конденсаторы

Это значит, что синусоидальный переменный ток будет периодически (с удвоенной частотой источника) перезаряжать емкость нагрузки, при этом в первую четверть периода энергия источника будет расходоваться на создание электрического поля между пластинами конденсатора. Во вторую четверть периода энергия электрического поля между пластинами конденсатора будет возвращаться к источнику.

В третью четверть периода емкость будет заряжаться от источника противоположной полярностью (по сравнению с тем что было в первую четверть периода). В четвертую четверть периода емкость снова вернет энергию электрического поля обратно в сеть. В течение следующего периода данный цикл повторится. Так ведет себя чисто емкостная нагрузка в цепи синусоидального переменного тока.

Читайте также:  Навесное оборудование для мотоблока робикс

Емкостная нагрузка

Практически получается, что при емкостной нагрузке ток опережает по фазе на четверть периода переменное напряжение, приложенное к данной нагрузке, потому что когда емкость заряжается, ток оказывается максимальным уже в первый момент, когда приложенное напряжение источника только начинает нарастать, энергия тока преобразуется в энергию увеличивающегося электрического поля накапливаемого в нагрузке заряда, как в конденсаторе.

Но с ростом приложенного напряжения, емкость уже имеет достаточно много накопленного заряда, поэтому с приближением напряжения источника к своему максимуму, скорость накопления заряда в емкостной нагрузке становится меньше, и потребляемый ток при этом уменьшается вплоть до нуля.

Примеры емкостных нагрузок: конденсаторные батареи, корректоры коэффициента мощности, синхронные двигатели, ЛЭП сверхвысокого напряжения.

ЛЭП сверхвысокого напряжения

Индуктивная нагрузка

Если теперь обратить внимание на индуктивную нагрузку, то она ведет себя в цепи переменного тока подобно катушке индуктивности.

Катушка индуктивности

Это значит, что синусоидальное переменное напряжение будет периодически (с удвоенной частотой источника) порождать ток через индуктивность нагрузки, при этом в первую четверть периода энергия источника будет расходоваться на создание магнитного поля тока через катушку.

Во вторую четверть периода энергия магнитного поля катушки будет возвращаться к источнику. В третью четверть периода катушка будет намагничиваться противоположной полярностью (по сравнению с тем что было в первую четверть периода), и в четвертую четверть периода индуктивность снова вернет энергию магнитного поля обратно в сеть.

В течение следующего периода данный цикл повторится. Так ведет себя чисто индуктивная нагрузка в цепи синусоидального переменного тока.

Индуктивная нагрузка

На деле получается, что при индуктивной нагрузке ток отстает по фазе на четверть периода от переменного напряжения, приложенного к данной нагрузке, потому что когда индуктивность начинает намагничивается, в первый момент времени ток через нее оказывается минимальным, хотя приложенное напряжение источника и находится уже в максимальной точке.

Энергия источника преобразуется здесь в энергию увеличивающегося магнитного поля тока, протекающего через индуктивность нагрузки. При уменьшении напряжения, ток через индуктивность уже имеет достаточно большую величину, поэтому с приближением напряжения источника к своему минимуму, скорость роста тока в индуктивной нагрузке замедляется, но сам ток в индуктивности при этом максимален.

Электрические двигатели

Примеры индуктивных нагрузок: асинхронные двигатели, электромагниты, дроссели, реакторы, трансформаторы, выпрямители, тиристорные преобразователи.

Источник

Особенности активно-емкостной нагрузки

Время на чтение:

В этой статье подробно рассмотрены три основных типа потребляемой мощности, которые используются в бытовых приборах и автомобилях.

Что это такое

Первым делом необходимо узнать, что такое активная энергия. Эта величина, расходуемая нагрузкой в обычном сопротивлении. Это относится к нагревательный устройствам (чайники, электрические камины, микроволновые печи и прочее). Расходуемая мощность данных устройств полностью активная. В таким устройствах используемая энергия навсегда и полностью трансформируется в другую группу энергии.

Мощность указывается символом P и обозначается в Ваттах (Вт).

Чтобы найти эту величину, необходимо воспользоваться формулой:

В таком случае работа будет выполняться без изменений.

График индуктивной мощности

В цепях с переменным напряжением есть только активная энергия, потому что показатели мгновенной и средней мощности там сходятся.

Индуктивная работа — через нее проходит сила тока и отстает от напряжения. В результате будет расходоваться реактивная энергия.

Для примера, такая нагрузка используется в асинхронных двигателях, датчиках холостого хода, реакторах, трансформаторов тока, выпрямителях и прочих преобразователях.

Асинхронный двигатель индуктивного вида

Откуда появляется

Образование названия «реактивная мощь» относится к необходимости выделения энергии, которая расходуется нагрузкой, с формированием электромагнитных полей.

Этот компонент используется при индуктивном типе. Например, во время подсоединения электрических двигателей. Все бытовые приборы, а также некоторые промышленные и сельскохозяйственные объекты используют данный тип нагрузки.

Три основных вида на примере генератора

В электроцепях, когда работа будет активного вида, то внутри ток не отстает от показателей напряжения. Если энергия будет индуктивного вида, то ток будет запаздывать в отличии от напряжения. При емкостной, ток будет идти быстрее напряжения. Ниже подробно разобраны три типа работ, а также сфера их применения.

Виды энергии

Ниже представлены основные виды нагрузок, которые используются в повседневной жизни. Они могут быть как в бытовых приборах, как и в различных двигателях или датчиках.

Активная

Для данной работы используется закон Ома, который выполняется в каждую секунду времени и схож с правилом для переменного тока. Такой тип применяется в лампах для освещения или в электроплитах.

Активно емкостная нагрузка формула

Емкостная

Этот вид превращает в течении определенного времени энергию электрического тока в электрополе, а далее превращает ее в электрический ток. А также, здесь сила тока будет опережать напряжение.

В качестве примера может быть конденсатор. К сожалению, встретить полные реактивные нагрузки невозможно ни в одном приборе. Каждый вид не имеет коэффициент полезного действия 100%, потому что существуют потери энергии в воздухе и прочее. Потому чаще всего используется название активно-реактивной работы.

Индуктивная

Данный вид превращает энергию в магнитное поле, а далее меняет ее в электрический ток. Сила тока в этом случае будет отставать от напряжения. Для примера можно взять индуктивную катушку или датчик дросселя на автомобиле.

Функционирование выпрямителей

Как влияют нагрузки на функционирование выпрямителей и напряжение в цепи

В любой цепи выпрямителя, нагрузка будет иметь исключительно активное сопротивление.

На практике такие приборы достаточно редко функционируют на полном активном сопротивлении, потому что в большинстве вариантов их оснащают электрическими элементами, содержащими индуктивные и емкостные части.

Бывает, что работа содержит части с индуктивной мощностью (обмотки реле, дроссельные заслонки и так далее). Также выпрямители могут спокойно функционировать на встречной электродвижущей силе, например при зарядке АКБ для автомобилей. Также мощность может быть смешанного вида, в которой есть все три параметра.

График зависимости с выпрямителем

Емкостная и индуктивная нагрузка чаще всего встречаются в повседневной жизни и бытовых приборах.

На предприятиях также устанавливают конденсаторные установки, потому что они обладают рядом плюсов:

  • уменьшение расходов электрической энергии;
  • уменьшение расходов на ремонт и обслуживание промышленных приборов;
  • сдерживание шумов в сети;
  • снижение искажения фаз;
  • увеличение возможности сети электроснабжения, благодаря чему можно подсоединять электрические приборы без увеличения стоимости питания;
  • уменьшение сопротивления в сети;
  • снижение уровня высокочастотных помех.

Данные установки достаточно дорого стоят, поэтому нет смысла использовать их в квартирах, домах или небольших офисах.

Конденсаторные установки

В заключении необходимо отметить, что такие нагрузки необходимо знать для того, чтобы правильно рассчитать мощность каких-либо приборов. Помимо всех перечисленных типов, существуют также резистивные и активные. Информацию о них можно найти на соответствующих форумах по электрике.

Источник