Меню

Оборудование косвенного нагрева сопротивлением



Тема 7. Косвенный нагрев сопротивлением

— косвенный электронагрев сопротивлением;

— материалы для нагревательных элементов;

— Карасенко В.А. и др. Электротехнология. – М.: Колос, 1992.

— Кудрявцев И.Ф., Карасенко В.А. Электрический нагрев и электротехнология. Учебное пособие.- М.: Колос, 1976.

— Электронагревательные установки в сельскохозяйственном производстве. /Под общ. ред. В.Н. Растригина/. – М.: Агропромиздат, 1985.

— Глушков А.М., Юдаев И.В. Светотехнтка и электротехнология. ч. 2 «Электротехнология» ФГОУ ВПО «Волгоградская ГСХА». – Волгоград, 2008, (текст).

Основным узлом ЭТУ, реализующим косвенный нагрев методом сопротивления, являются нагревательные элементы. Материал нагревательных элементов выбирают в зависимости от значения рабочей температуры ( t раб) и условий работы. Эти материалы, прежде всего, должны быть:

Основные материалы, из которых изготавливаются нагревательные элементы ЭТУ – это, сталь и следующие сплавы:

— хромникельалюминивые (нихром с алюминием).

Наиболее применяемые это нихромы: Х20Н80; Х15Н60; Х25Н20; Х23Н18 и т.д.

В ЭТУ с рабочими температурами t раб > 1250 0 С применяют неметаллические нагреватели из графита, тугоплавких металлов и т. д. Температурный коэффициент сопротивления нагревателей, изготовленных из обычной стали, большой, жаростойкость и жаропрочность невысокие, сопротивление зависит от значения протекающего по ним току. Однако, они дешевле и недефицитны, поэтому их применяют для ЭТУ низкотемпературного нагрева (300…400 0 С).

Нагревательные элементы по конструктивному исполнению разделяются на:

— открытые электронагреватели изготавливают из металлических сплавов в виде ленты или проволоки, свёрнутых в спираль или зигзагообразно. Их крепят на керамических жаропрочных изоляторах в рабочем пространстве ЭТУ.

Теплота передаётся конвекцией и излучением. Чем выше температура нагрева, тем большая часть энергии инфракрасного излучения передаётся нагреваемому материалу.

— закрытый нагреватель находится в защищённой оболочке. Теплота передаётся в основном конвекцией.

— герметические нагреватели или ТЭН

Трубчатые электронагреватели (ТЭН) применяют для нагрева воды, воздуха, растворов электролитов и других сред. ТЭН можно размещать

непосредственно в нагреваемой среде.

Рисунок 7.1 — Конструкция ТЭНа: D — диаметр оболочки; L — развернутая

длина ТЭН; Lk — длина контактного стержня в заделке

В качестве материала оболочки обычно используют:

— углеродистую и нержавеющую сталь.

Для рационального размещения ТЭНов в рабочей зоне электротермической установки им придают различную форму и устанавливают при помощи крепёжных устройств.

При нагреве газообразных сред для увеличения теплоотдачи от ТЭНов применяют оребрение, выполняемое из материала с хорошей теплопроводностью. Применение такого конструктивного решения способствует снижению габаритных размеров ЭТУ, и следовательно, их металлоёмкости.

Основным параметром, характеризующим ТЭН, является удельная поверхностная мощность P уд, Вт/см 2 :

Предельное значение Р уд ТЭНа определяется условиями работы, допустимыми температурами поверхности спирали, наполнителя и оболочки. Для определения числа нагревателей (необходимо помнить, что n – должно быть кратным трём):

где P ЭТУ – мощность установки, Вт; P 1 – мощность выбранного ТЭНа, Вт.

Цель электрического расчёта нагревателей – определение их размеров (сечение и длины).

Исходные данные для расчёта: напряжение питания U пит; мощность одного нагревателя Р н; условия работы нагревательных элементов, температурный режим.

Расчёт нагревателей основан на совместном решении, связывающих электрические и тепловые параметры нагревателей:

а также уравнение теплообмена при теплопередаче:

где 1 – коэффициент эффективности излучения нагревателей; Р уит; Р удк; Р уди – удельные поверхностные мощности нагревателей при теплообмене теплопроводностью, конвекцией, излучением, Вт/см 2 .

Удельная поверхностная мощность определяется:

Зная конкретные условия работы нагревателей можно определить Р удт; Р удк; Р уди.

Для нагревателей круглого сечения поперечный периметр нагревателя и площадь поперечного сечения нагревателя можно определить по формулам:

Можно определить диаметр нагревателя круглого сечения:

По расчётному значению диаметра d подбирают ближайший, стандартный диаметр проволоки нагревателя. Длина выбранного провода определяется по формуле:

Для ленточного нагревателя, у которого площадь поперечного сечения и поперечный периметр равны:

где m = b/а; а – толщина ленты; b – ширина ленты.

Расчётная толщина нагревателя прямоугольного сечения:

По найденному значению толщины ленты а подбирают стандартную ленту длиной:

Основные параметры можно рассчитать упрощённо с использованием таблиц по значениям рабочего тока и расчётной температуре. Температуру рабочей поверхности нагревателя t раб принимают такой, чтобы она была больше технологически необходимой температуры материала.

Для расчёта открытого нагревателя круглого сечения используют следующие выражения:

По t расч и I раб по таблице определяют S сечение (мм 2 ) и диаметр d (мм) проволоки.

Нагревательный провод может быть намотан в виде спирали или уложен равномерно на керамический каркас и защищён пластинами из жаропрочного электроизоляционного материала или металла, что повышает температуру элементов. Чтобы выбрать сечение нагревателя по таблице, находят расчётную температуру по формуле:

где k м – коэффициент монтажа, учитывающий ухудшение условий охлаждения нагревателя из-за его конструктивного исполнения; k с – коэффициент среды, учитывающий улучшение фактических условий охлаждения нагревателя по сравнению с неподвижной воздушной средой.

Для нагревательного элемента из проволоки, свитой в спираль, k м=0,8…0,9; свитой в спираль на керамическом основании – k м=0,6…0,7; для проволоки нагревательных плиток и некоторых трубчатых водонагревателей – k м=0,5…0,6; для проволоки лабораторных печей, электронагревателей пола и почв – k м=0,3…0,4. Меньшее значение k м соответствуют проволочным нагревателям меньшего диаметра, большие большего диаметра.

При работе в условиях, отличающихся от свободной конвекции, принимают k с=0,6…0,7 – для нагревателей элементов в воздушном потоке;

k с=2,5 – в неподвижной воде; k с=3,0…3,5 – в потоке воды.

Температура рабочей поверхности нагревателя должна удовлетворять условию:

где t max— максимально допустимая температура нагревательного элемента.

Длину провода определяют по выражению:

где d – диаметр проволоки нагревателя, м; ρ – удельное сопротивление материала нагревателя при действительной температуре, Ом·м. Далее компонуют рабочее пространство электротермической установки.

Источник

Электрические печи нагрева сопротивлением

Печь сопротивления представляет собой футерованную камеру. Тепло выделяется в нагревателе, после чего отдается нагреваемому изделию.

Электрические печи сопротивления по способу превращения электрической энергии в тепловую разделяются на печи косвенного действия и установки прямого нагрева.

Классификация печей нагрева сопротивлением по технологическому назначению

По технологическому назначению печи сопротивления косвенного нагрева можно разделить на три группы:

1) термические печи для различных видов термической и термохимической обработки черных и цветных металлов, стекла, керамики, металлокерамики, пластмасс и других материалов;

2) плавильные печи для плавки легкоплавких цветных металлов и химически активных тугоплавких металлов и сплавов;

3) сушильные печи для сушки лакокрасочных покрытий, литейных форм, обмазок сварочных электродов, металлокерамических изделий, эмалей и т. п.

Классификация электрических печей нагрева сопротивления по характеру работы

Классификация электрических печей нагрева сопротивления по характеру работыЭлектрические печи сопротивления обычно используют для термической обработки изделий, которые должны изменять свою температуру в соответствие с заданным режимом обработки. По первому способу изделие помещается в камеру печи и изменяют температуру внутри камеры в соответствии с графиком обработки, потом изделие выпускают, загружают новое, цикл повторяется. Такой способ принят в печах периодического действия (садочные печи). Есть два вида садочных печей – камерные и шахтные.

Для печи периодического действия (садочной) характерно неизменное положение нагреваемого тела (садки) в течение всего времени пребывания в печи. Цикл работы печи включает загрузку, тепловую обработку по заданному режиму и выгрузку. Печь может работать круглосуточно (тогда циклы непрерывно следуют друг за другом) или с перерывами – в одну или две смены.

По второму способу камерные печи сопротивления создают несколько температурных зон в соответствии с требуемым графиком обработки изделия. Обрабатываемое изделие перемещается с заданной скоростью от загрузочного окна к разгрузочному. При такой организации процесса возможно движение изделий непрерывным потоком. Это печи непрерывного действия (методические).

Эти печи используют в условиях серийного производства, автоматизация технологического процесса предполагает обеспечение:

1. Автоматического перемещения изделия с заданной скоростью внутри печи.

Читайте также:  Электрическое оборудование электрического подвижного состава

2. Автоматическую подачу необработанных изделий и уборки обработанных.

3. Автоматическая стабилизация t° в температурных зонах печи.

Печи непрерывного действия особенно удобны для работы в поточных технологических линиях с металлообрабатывающими станками и другими агрегатами и устройствами.

Классификация электрических печей нагрева сопротивлением по температурному режиму

Печи сопротивления косвенного нагрева разделяются по температурному режиму на низко-, средне- и высокотемпературные.

У первых верхняя температурная граница лежит в пределах 600–650°С и процессы теплообмена идут с значительной или даже преобладающей ролью конвекции. Низкотемпературные печи часто называют конвекционными печами.

В средне- и высокотемпературных печах теплообмен внутри печи осуществляется в основном излучением, а доля конвективного теплообмена незначительна. Печи с преобладающим лучистым теплообменом иногда называют радиационными.

Классификация электрических печей нагрева сопротивлением по температурному режимуСреднетемпературные печи имеют верхнюю температурную границу 1200–1250 °С, определяемую возможностью применения для нагревательных элементов специальных сплавов сопротивления. Технологические применения этих печей весьма обширны: процессы закалки, нормализации, отжига, термохимическая обработка черных металлов, нагрев под обработку давлением черных и цветных металлов и т. п.

Названные группы печей отличаются как конструктивно, так и механизмом передачи тепла от нагревателя к изделию. Таким образом, в низкотемпературных печах основным механизмом передачи тепла является конвекция, т.е. в таких печах тепло передается потоком циркулирующего воздуха. Для интенсификации процесса теплопередачи низкотемпературные печи обычно снабжают вентилятором и нагреватель иногда размещается в отдельной камере. Эта камера связана с основной камерой каналами для циркуляции воздуха. В средне и высоко температурных печах основное тепло от нагревателя к изделию передается излучением. Т.о., в данных печах установка вентилятора не нужна, но необходимо наличие оптической связи между нагревателем и изделием, т.е. они должны быть размещены в общей камере.

Классификация электрических печей нагрева сопротивлением по температурному режимуДругие конструктивные отличия связаны с устройством футеровки и материалом нагревательных элементов. В низкотемпературных печах футеровка содержит только теплоизоляционный слой, а жесткость футеровки обеспечивается двумя связанными между собой внешними и внутренними каркасами.

В среднетемпературных печах в футеровке появляется огнеупорный слой, выполненный их легковеса. Этот слой имеет механическую связь с внешним каркасом печи, в связи с чем надобность во внутреннем каркасе отпадает.

В высокотемпературных печах огнеупорный слой выполнен из шамота. Между огнеупорным слоем и слоем теплоизоляции вводится дополнительный слой легковеса для снижения температуры теплоизоляции до допустимой.

В низко и средне температурных печах используются металлические нагреватели их фехраля и константана при t° до 800 °С и нихрома до 100 °С.

Типы и конструкции печей сопротивления косвенного нагреваВ высокотемпературных печах обычно используют неметаллические нагреватели (карборундовые, графитовые, угольные). Такие нагреватели могут значительно изменять свое сопротивление при нагреве и в процессе эксплуатации. Кроме того, для надежной работы такие нагреватели должны разогреваться постепенно при малой мощности (иначе они растрескаются).

Учет этих специфических особенностей приводит к необходимости применять в высокотемпературных печах те или иные средства регулирования подводимого напряжения (автотрансформатор, регулируемый трансформатор).

Для многих технологических процессов требуются вакуум или инертные газы в рабочем пространстве печи, поэтому в ряде случаев печи сопротивления выполняют вакуумными, газонаполненными или вакуумно-компрессионными.

Типы и конструкции печей сопротивления косвенного нагрева

Электрические печи сопротивления периодического действия

Электропечи сопротивления периодического действия разнообразны по конструкции, их применяют в индивидуальном или мелкосерийном производстве. Из них наиболее широко распространены колпаковые, элеваторные, камерные и шахтные печи.

Колпаковая печь – печь периодического действия с открытым снизу подъемным нагревательным колпаком и неподвижным стендом. Нагреваемые детали (садка) 5 с помощью подъемно-транспортных устройств помещаются на стенд 1. Поверх них сначала устанавливается жаропрочный колпак – муфель 3, а затем основной колпак 2 камеры печи, выполненной из металлического каркаса с огнеупорной футеровкой. Нагревательные элементы 4 расположены по боковым стенкам колпака и в кладке стенда. Питание нагревательных элементов осуществляется с помощью гибких кабелей и штепсельных разъемов.

Печи сопротивления периодического действия: а – колпаковая; б – элеваторная; в – камерная; г – шахтная; 1 – стенд; 2 – камера печи; 3 – жаропрочный муфель; 4 – нагревательные элементы; 5 – нагреваемое изделие (садка); 6 – опускающийся под; 7 – подъемное устройство; 8 – свод; 9 – механизм подъема свода

Колпаковая печьПо окончании нагрева электропитание колпака отключается и он переносится на соседний стенд, где уже установлена очередная загрузка для нагрева. Остывание садки происходит на стенде под жароупорным муфелем, что обеспечивает необходимую скорость остывания.

В колпаковых печах при каждом цикле теряется лишь теплота, запасенная в муфеле и кладке стенда, что составляет 10–15 % от теплоты, запасенной в кладке колпака.

Мощность колпаковых печей достигает нескольких сотен киловатт. Благодаря тому что колпак и муфель могут быть герметизированы, нагрев и остывание садки можно проводить в защитной атмосфере.

Элеваторная электропечьЭлеваторная электропечь – печь периодического действия с открытой снизу неподвижной камерой нагрева 2 и с опускающимся подом 6. Она представляет собой цилиндрическую или прямоугольную камеру, установленную на колоннах на высоте 3–4 м над уровнем пола цеха.

Под печи поднимается и опускается гидравлическим или электромеханическим подъемником, который установлен под камерой нагрева. Нагреваемые изделия – садку 5 нагружают на тележку, затем с помощью лебедки продвигают под печь и поднимают подъемником 7, вдвигая в камеру. По окончании технологического процесса под опускается и изделие снимается.

В низкотемпературных печах нагреватели 4 расположены на стенках. В высокотемпературных печах нагреватели расположены на стенках и в поду.

Элеваторные печи служат для отжига, эмалирования, цементации, обжига керамических изделий, спекания и металлизации деталей.

Печи комплектуются многоступенчатыми трансформаторами.

Камерная электропечьКамерная электропечь – печь периодического действия с камерой нагрева, загрузка и разгрузка садки которой производятся в горизонтальном направлении. Камерная печь состоит из прямоугольной камеры 2 с огнеупорной футеровкой и теплоизоляцией, перекрытой сводом 8 и помещенной в металлический кожух. Печь загружается и выгружается через закрываемое дверцей отверстие в передней части.

В поду камерной печи обычно имеется жароупорная плита, на которой расположены нагреватели 4. В печах до 1000 К теплообмен обеспечивается за счет излучения или вынужденной конвекции, обеспечиваемой замкнутой циркуляцией печной атмосферы.

Шахтная печьШахтная печь представляет собой круглую, квадратную или прямоугольную шахту. Корпус печи заглублен в землю и перекрывается сверху крышкой с затвором и электроприводом. Нагревательные элементы в ней установлены обычно по боковым стенкам.

Электропечи сопротивления непрерывного действия (методические печи)

Электропечи сопротивления непрерывного действия (методические печи)При установившемся технологическом процессе термообработки для увеличения производительности предпочтительно применять непрерывнодействующие печи. В зависимости от требований технологического процесса в таких печах кроме нагрева изделий до заданных температур можно производить выдержку при этой температуре, а также их охлаждение. В таком случае печи выполняют состоящими из нескольких зон, протяженность которых зависит от конкретных условий проведения технологического процесса.

Часто печи непрерывного действия объединяют в один полностью механизированный и автоматизированный агрегат, состоящий из нескольких печей. В частности, такая линия может включать в себя закалочную и отпускную печи, закалочный бак, моечную машину и сушилку.

Конструкции печей непрерывного действия различаются в основном механизмами перемещения нагреваемых изделий в рабочем пространстве печи.

Конвейерная печь – печь непрерывного действия с перемещением садки на горизонтальном конвейере.

Схема конвейерной электропечи: 1 – теплоизолированный корпус; 2 – загрузочное окно; 3 – нагреваемое изделие; 4 – нагревательные элементы; 5 – конвейер

Под печи представляет собой конвейер – полотно, натянутое между двумя валами, которые приводятся в движение специальными двигателями. Нагреваемые изделия укладываются на конвейер и передвигаются на нем через рабочее пространство печи. Конвейерная лента может быть выполнена плетеной из нихромовой сетки, штампованных пластин и соединяющих их прутков, а также для тяжелых нагреваемых изделий – из штампованных или литых цепных звеньев.

конвейерная электропечьКонвейер размещается целиком в камере печи и не остывает. Однако валы конвейера находятся в очень тяжелых условиях и требуют водяного охлаждения. Поэтому часто концы конвейера выносят за пределы печи. В этом случае значительно облегчаются условия работы валов, но возрастают потери теплоты в связи с остыванием конвейера у разгрузочных и загрузочных концов. Нагреватели в конвейерных печах чаще всего размещаются на своде или в поду под верхней частью ленты конвейера, реже – на боковых стенках.

Читайте также:  Сертификат по ремонту медицинского оборудования

Конвейерные нагревательные печи в основном применяются для нагрева сравнительно мелких деталей до температуры около 1200 К.

Схема толкательной печи: 1 – толкатель с приводным механизмом; 2 – нагреваемые изделия; 3 – теплоизолированный корпус; 4 – нагревательные элементы; 5 – подина печи; 6 – закалочная ванна

Для высоких температур (выше 1400 К) применяются печи непрерывного действия с перемещением садки путем проталкивания вдоль рабочего пространства – толкательные печи. Они применяются для нагрева как мелких, так и крупных деталей. На поду таких печей устанавливаются направляющие в виде труб, рельсов или роликового пода, изготовленных из жароупорного материала, и по ним в сварных или литых специальных поддонах перемещаются нагреваемые изделия.

Перемещение поддонов обеспечивается электромеханическими или гидравлическими толкающими устройствами. Основное преимущество таких печей перед другими типами – их относительная простота, отсутствие сложных деталей из жароупорных материалов. Их недостатки – наличие поддонов, применение которых ведет к увеличению тепловых потерь и к повышенному расходу электрической энергии, ограниченный срок службы поддонов.

Толкательные печи , предназначенные для нагрева крупных заготовок правильной формы, выполняют без поддонов. При этом нагреваемые изделия укладывают в печь вплотную непосредственно на направляющие.

Толкательные печиТолкательные водородные печи предназначены для различных технологических процессов, требующих нагрева в водороде или диссоциированном аммиаке. Они широко применяются в электроламповом производстве, при производстве металлокерамических деталей и твердых сплавов, для обжига и спекания керамики, для отжига и пайки металлических деталей и т. д.

Протяжная электропечьПри использовании в качестве защитного газа водорода или диссоциированного аммиака на загрузочных и разгрузочных камерах печи предусмотрены «свечи» для контроля заполнения ее рабочим газом. Состав рабочего газа каждой печи регулируется самостоятельно и расход его контролируется с помощью расходомеров для водорода и азота. Разгрузочные камеры печей имеют предохранительные клапаны для защиты от разрушения в случае образования в них взрывоопасной смеси.

Протяжная электропечь – печь непрерывного действия для нагрева проволоки, прутков или ленты путем непрерывной протяжки через камеру нагрева. Она представляет собой муфель с нагревателями, через который пропускается нагреваемое изделие.

Протяжная электропечь: 1 – теплоизолирующий корпус; 2 – нагреватель; 3 – муфель; 4 – нагреваемое изделие

В протяжных печах применяется также смешанный способ нагрева; прямой – с помощью контактных приводных роликов и косвенный – с помощью нагревателя. Косвенный нагрев обеспечивает термообработку концов прутка в начале и в конце процесса, когда прямой нагрев не может быть осуществлен.

Источник

Электронагрев сопротивлением. Косвенный нагрев

Косвенный электронагрев наиболее распространен в низко — и среднетемпературных процессах, а также в некоторых высокотемпературных процессах ремонтного производства и промышленности. При косвенном способе нагрева под действием электрического тока, протекающего по металлическому проводнику, последний нагревается и отдает свое тепло в окружающую среду путем теплопроводности, конвенции или лучеиспускания.

Надо иметь четкое представление, какими основными электрическими и физическими свойствами должны обладать проводниковые материалы, используемые для изготовления нагревательных элементов, и какие специальные сплавы наиболее полно удовлетворяют этим требованиям. Следует ознакомиться с недостатками чистых металлов (молибдена, вольфрама, ниобия) и стали при использовании их в качестве нагревателей.

Одним из основных методов расчета открытых и закрытых нагревательных элементов является расчет по способу таблиц (графиков) нагрузок. При ознакомлении с ним следует обратить большое внимание на необходимость при определении расчетной (фиктивной) температуры учитывать коэффициенты монтажа и среды, что позволяет пользоваться таблицами нагрузок, составленными для горизонтально расположенной проволоки в спокойной среде, также и при расчетах нагревательных элементов, находящихся в других условиях среды и монтажа.

Изучая метод расчета нагревателей из стальной проволоки, надо помнить, что глубина проникновения тока в металл пропорциональна его удельному сопротивлению, вследствие чего у стальных нагревательных элементов, имеющих сравнительно малое удельное сопротивление, сильно выражен поверхностный эффект.

Необходимо знать, что мощность нагревателя при данных его размерах можно регулировать изменением питающего напряжения или сопротивления нагревателя. Наибольшее распространение получило регулирование мощности изменением общего сопротивления путем изменения числа включенных нагревателей или схемы включения.

Как известно, все более широкое применение в различных электрических нагревательных установках начинают получать трубчатые нагревательные элементы (ТЭНы), выпускаемые промышленностью и являющиеся наиболее совершенными. Они обладают многими преимуществами перед нагревателями открытого и закрытого типа. Здесь следует обратить внимание на простоту расчета нагревательных установок с ТЭНами по допустимой поверхностной мощности, учитывающей условия работы ТЭНов в определенной среде.

Следует также изучить марки выпускаемых промышленностью нагревательных кабелей и проводов, их технические характеристики, области применения и особенности расчета нагревательных устройств с проводами, изготовленными из стальной проволоки.

В сельскохозяйственной практике для молодняка животных и птиц применяются источники инфракрасного излучения. Особенность инфракрасного нагрева состоит в том, что максимальный эффект нагрева достигается за счет спектра излучения, лежащего в инфракрасной области, и в наибольшей степени соответствующего оптическим свойствам нагреваемой среды.

Необходимо ознакомиться с различными источниками инфракрасного излучения, изучить их особенности, преимущества и недостатки, знать, в каких случаях целесообразнее применять тот или иной тип излучателя.

Источник

Электрооборудование печей нагрева сопротивлением

date image2014-02-13
views image10209

facebook icon vkontakte icon twitter icon odnoklasniki icon

Классификация и устройство электрических печей нагрева сопротивлением

Классификация электротермических установок

Классификация электротермических установок

Электронагрев широко применяется на промыщленных предприяти­ях при производстве фасонного литья из металлов и сплавов, нагрева- заготовок перед обработкой давлением, термической обработки деталей и узлов электрических машин, сушки изоляционных ма­териалов и т. д.

Электротермической установкой (ЭТУ) называют комплекс, состоящий из электротермического оборудо­вания (электрической печи или электротермического устройства в которых электрическая энергия преобра­зуется в тепловую), и электрического, механического и другого оборудования, обеспечивающего осуществление рабочего процесса в установке.

Эл. нагрев дает следующие преимущества по сравнению с топливным:

1. Очень простое и точное осуществление заданного температурного режима.

2. Возможность концентрации высоких мощностей в малом объеме.

3. Получение высоких температур (3000 °C и выше против 2000 ° при топливном нагреве).

4. Возможность получения высокой равномерности теплового поля.

5. Отсутствие воздействия газов на обрабатываемое изделие.

6. Возможность вести обработку в благоприятной среде (инертный газ или

7. Малый угар легирующих присадок.

8. Высокое качество получаемых металлов.

9. Легкость механизации и автоматизации электротермических установок.

10. Возможность использования поточных линий.

11. Лучшие условия труда обслуживающего персонала.

Недостатки: более сложная конструкция, высокая стоимость установки и получаемой тепловой энергии.

Электротермическое оборудование весьма разнооб­разно по принципу действия, конструкции и назначению. В наиболее общей форме все электрические печи и элек­тротермические устройства можно разделить по назна­чению на плавильные печи для выплавки или перегрева расплавленных металлов и сплавов и термические (на­гревательные) печи и устройства для термообработки, изделий из металла, нагрева материалов под пластиче­скую деформацию, сушки изделий и т. д. По способу пре­образования электрической энергии в тепловую разли­чают, в частности, печи и устройства сопротивления, ду­говые печи, индукционные печи и устройства.

1. По способу превращения эл. энергии в тепло.

1) Установки с нагреваемым током активным сопротивлением.

2) Индукционные установки.

3) Дуговые установки.

4) Установки диэлектрического нагрева.

2. По месту выделения тепловой энергии.

1) Прямого нагрева (тепло выделяется непосредственно в изделиях)

2) Косвенного нагрева (тепло выделяется в нагревателе либо в межэлектродном промежутке эл. дуги.

Читайте также:  Ремонт оборудования по чек листами

3. По конструктивным признакам.

4. По назначению.

В электропечах и электротермических устройствах сопротивления используется выделение тепла электриче­ским током при прохождении его через твердые и жид­кие тела. Электропечи этого вида преимущественно выполняются как печи косвенного нагрева. Превращение электроэнергии в тепло в них происходит в твердых нагревательных элементах, от которых тепло путем излу­чения, конвекции и теплопроводности передается нагре­ваемому телу, либо в жидком теплоносителе — расплавленной соли, в которую погружается нагреваемое тело, и тепло передается ему путем конвекции и теплопровод­ности. Печи сопротивления — самый распространенный и многообразный вид электропечей.

Плавильные печи сопротивления применяют преиму­щественно при производстве литья из легкоплавких ме­таллов и сплавов.

Работа плавильных дуговых электропечей основана на выделении тепла в дуговом разряде. В электрической дуге концентрируется большая мощность и развивается температура свыше 3500° С. В дуговых печах косвенного нагрева дуга горит между электродами, а тепло пере­дается расплавляемому телу в основном излучением. Пе­чи такого рода используют при производстве фасонного литья из цветных металлов, их сплавов и чугуна. В дуго­вых печах прямого нагрева одним из электродов служит само расплавляемое тело. Эти печи предназначены для выплавки стали, тугоплавких металлов и сплавов. В ду­говых печах прямого нагрева, в частности, выплавляют большую часть стали для фасонного литья.

В индукционных печах и устройствах тепло в элек­тропроводном нагреваемом теле выделяется токами, ин­дуктированными в нем переменным электромагнитным полем. Таким образом, здесь осуществляется прямой на­грев. Индукционную печь или устройство можно рас­сматривать как своего рода трансформатор, в котором первичная обмотка (индуктор) подключена к источнику переменного тока, а вторичной обмоткой служит само нагреваемое тело. Индукционные плавильные печи при­меняют при производстве литья, в том числе фасонного, из стали, чугуна, цветных металлов и сплавов. Нагрева­тельные индукционные печи используют для нагрева за­готовок под пластическую деформацию и для проведения разного рода термообработки. Индукционные термиче­ские устройства применяют для поверхностной закалки и других специализированных операций.

К электротермическому оборудованию нагрева сопротивлением относятся:

· Электрические печи сопротивления

· Установки контактного нагрева,

· Установки и оборудование инфракрасного нагрева

Области применения: Нагрев металлов под термообработку и пластическую деформацию; плавка металлов; сушка материалов; нагрев в вакууме и контролируемой атмосфере.

Способ превращения энергии:Электрическая энергия превращается в тепловую при протекании тока через твердые или жидкие тела (эффект Джоуля).

Электропечи этого вида выполняются как печи косвенного нагрева. Превращение электроэнергии в тепло в них происходит в твердых нагревательных элементах, от которых тепло путем излу­чения, конвекции и теплопроводности передается нагре­ваемому телу, либо в жидком теплоносителе — расплав ленной соли, в которую погружается нагреваемое тело, и тепло передается ему путем конвекции и теплопровод­ности. Печи сопротивления — самый распространенный и многообразный вид электропечей.

По технологическому назначению печи сопротивления можно разделить на три группы:

1) термические печи для различных видов термической и термохимической обработки черных и цветных металлов, стекла, керамики, металлокерамики, пластмасс и других материалов;

2) плавильные печи для плавки легкоплавких цветных металлов и химически активных тугоплавких металлов и сплавов;

3) сушильные печи для сушки лакокрасочных покрытий, литейных форм, обмазок сварочных электродов, металлокерамических изделий, эмалей и т. п.

В каждой из этих групп печи по характеру работы, в свою очередь, можно разделить на печи периодического и непрерывного действия.

По температурному режиму печи нагрева сопротивлением подразделяются на низко-, средне- и высокотемпературные – низкотемературные (до 600–650°С), среднетемпературные (до 1200–1250 °С), высокотемператцрные (выше 1250 °С).

Названные группы печей отличаются как конструктивно, устройством футеровки, материалом нагревательных элементов., так и механизмом передачи тепла от нагревателя к изделию. В низкотемпературных печах основным механизмом передачи тепла является конвекция, т.е. в таких печах тепло передается потоком циркулирующего воздуха. В средне и высоко температурных печах основное тепло от нагревателя к изделию передается излучением.

Электропечи сопротивления периодического действия разнообразны по конструкции, их применяют в индивидуальном или мелкосерийном производстве. Из них наиболее широко распространены колпаковые, элеваторные, камерные и шахтные печи.

Печи сопротивления периодического действия: а – колпаковая; б – элеваторная; в – камерная; г – шахтная; 1 – стенд; 2 – камера печи; 3 – жаропрочный муфель; 4 – нагревательные элементы; 5 – нагреваемое изделие (садка); 6 – опускающийся под; 7 – подъемное устройство; 8 – свод; 9 – механизм подъема свода.

Конструкции печей непрерывного действия различаются в основном механизмами перемещения нагреваемых изделий в рабочем пространстве печи.

Основные виды печей сопротивления непрерывного действия: конвейрная, толкательная, протяжная.

Схема конвейерной электропечи: 1 – теплоизолированный корпус; 2 – загрузочное окно; 3 – нагреваемое изделие; 4 – нагревательные элементы; 5 – конвейер

Схема толкательной печи: 1 – толкатель с приводным механизмом; 2 – нагреваемые изделия; 3 – теплоизолированный корпус; 4 – нагревательные элементы; 5 – подина печи; 6 – закалочная ванна

Протяжная электропечь: 1 – теплоизолирующий корпус; 2 – нагреватель; 3 – муфель; 4 – нагреваемое изделие.

Мощность современных электрических печей сопротивления колеблется от сотен ватт до нескольких мегаватт.

Печи мощностью более 20 кВт выполняются трехфазными при равно­мерном распределении нагрузки по фазам и подключаются к сетям 220, 380, 660 В непосредственно или через печные трансформаторы (или автотранс­форматоры).

Применяемое в электрических печах сопротивления электрооборудование включает 3 группы: силовое электрооборудование, аппаратура управления и контрольно-измерительная (КИП).

К силовому электрооборудованию относятся

— силовые понижающие трансформаторы и регулировочные авто­трансформаторы,

— силовые электроприводы вспомогательных механизмов,

— силовая коммутационная и защитная аппаратура.

К аппаратуре управления относятся комплектные станции управления с коммутационной аппаратурой. Переключатели, кнопки, реле, конечные выключатели, электромагнитные пускатели, реле применяются обычного исполнения.

К КИП относятся приборы (устройства) контроля, измерения и сигна­лизации. Обычно вынесены на щит. Каждая печь сопротивления должна быть обязстельно оборудована пирометрическими материалами. Для мелких неответственных печей это может быть термопара с указывающим прибором, в большинстве промышленных печей обязательно автоматическое регулирование температуры. Оно осуществляется с помощью приборов, регистрирующих температуру печи.

Большинство электрических печей сопротивления не ну­ждаются в силовых трансформаторах.

Регулировочные трансформаторы и автотрансформаторы применяют, когда печь выполнена с нагревательными элементами, меняющими свое сопротивление в зависимости от температуры (вольфрамовые, графитовые, молибденовые), для питания со­ляных ванн и установок прямого нагрева.

Все промышленные печи сопротивления работают в режиме автомати­ческого регулирования температуры. Регулирование рабочей температуры в электрической печи сопротивления производится изменением подводимой мощности.

Регулирование подводимой к печи мощности может быть дискретным и непрерывным.

При дискретном регулировании возможны следующие способы:

— периодическое подключение и отключение электрической печи нагрева сопротивлением к сети (двухпозиционное регулирование);

— переключение нагревательных элементов печи со «звезды» на «треугольник», либо с последо­вательного соединения на параллельное (трехпозиционное регулиро­вание).

Наибольшее распространение получило двухпозиционное регулирова­ние, так как способ прост и позволяет автоматизировать процесс.

По этому способу печь либо включают в сеть на ее номинальную мощность, либо полностью отключают от сети. Требуемое значение средней мощности, вводимой в печь обеспечивают, изменяя соотношения времени включенного и отключенного состояния.

Средняя температура в печи соответствует средней мощности вводимой в печь. Резкие изменения мгновенной мощности приводят к колебаниям температуры около среднего уровня. Конструктивно двухпозиционное управление может быть обеспечено либо посредством обычного контактора, либо тиристорного переключателя. Тиристорный переключатель содержит встречно-параллельно соединенные тиристоры, работающие с a=0.

При непрерывном регулировании происходит плавное регулирование напряжения на нагревателях. Такое регулирование может быть осуществлено с помощью любой разновидности силовых усилителей. На практике наиболее распространены тиристорные регуляторы напряжения. Тиристорные источники питания содержат встречно-параллельно соединенные тиристоры, снабженные СИФУ.

Тиристорные источники питания имеют высокий КПД (до 98%).

Источник