Меню

Оборудование глобальной навигационной спутниковой системы



Система спутниковой навигации GPS – принцип, схема, применение

Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

Схема работы GPS
GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.
Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

Тектоника плит – происходит слежение за колебаниями плит;

Определение сейсмической активности;

Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;

Геодезия – определение точных границ земельных участков;

Игры, геотегинт и прочие развлекательные области.

Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

Навигация без GPS.

Основным конкурентом GPS является российская система ГЛОНАСС (глобальная навигационная спутниковая система). Свою полноценную работу система начала с 2010 года, попытки активно использовать ее предпринимались с 1995 года. Существует несколько отличий между двумя системами:

Разные кодировки – американцы используют CDMA, для российской системы используется FDMA;

Разные габариты устройств – ГЛОНАСС использует более сложную модель, поэтому повышается энергопотребление и размеры устройств;

Расстановка и движение спутников на орбите – российская система обеспечивает более широкий охват территории и более точное определение координат и времени.

Срок службы спутников – американские спутники делаются более качественными, поэтому они служат дольше.

Помимо ГЛОНАСС и GPS существуют и другие менее популярные навигационные системы – европейский Galileo и китайский Beidou.

Принцип работы GPS

Работает система GPS следующим образом – приемник сигнала измеряет задержку распространения сигнала от спутника до приемника. Из полученного сигнала приемник получает данные о местонахождении спутника. Для определения расстояния от спутника до приемника задержка сигнала умножается на скорость света.

С точки зрения геометрии работу навигационной системы можно проиллюстрировать так: несколько сфер, в середине которых находятся спутники, пересекаются и в них находится пользователь. Радиус каждой из сфер соответственно равен расстоянию до этого видимого спутника. Сигналы от трех спутников позволяют получить данные о широте и долготе, четвертый спутник дает информацию о высоте объекта над поверхностью. Полученные значения можно свести в систему уравнений, из которых можно найти координату пользователя. Таким образом, для получения точного местоположения необходимо провести 4 измерения дальностей до спутника (если исключить неправдоподобные результаты, достаточно трех измерений).
Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.
Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.
Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.
Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.
Все источники ошибок можно разделить на несколько групп:

Погрешность в вычислении орбит;

Ошибки, связанные с приемником;

Ошибки, связанные с многократным отражением сигнала от препятствий;

Ионосфера, тропосферные задержки сигнала;

Геометрия расположения спутников.

В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.
Характеристики навигационных систем GPS:

Количество спутников – 26, 21 основной, 5 запасных;

Количество орбитальных плоскостей – 6;

Высота орбиты – 20000 км;

Срок эксплуатации спутников – 7,5 лет;

Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;

Надежность навигационного определения – 95%.

Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

Количество каналов – в современных приемников используется от 12 до 20 каналов;

Наличие картографической поддержки;

Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.
Холодный, теплый и горячий старт GPS навигатора

Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.
Чтобы начать свою работу, навигатор должен:
Найти спутник и установить с ним связь;

Получить альманах и сохранить его в памяти;

Получить эфемериды от спутника и сохранить их;

Найти еще три спутника и установить с ними связь, получить от них эфемериды;

Вычислить координаты при помощи эфемерид и местоположения спутников.

Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом.
Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.
Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.
Ограничения на покупку и использование самодельных модулей GPS

Читайте также:  Копейский завод нестандартного оборудования официальный сайт

Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.
Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.
Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

Источник

Глобальная навигационная спутниковая система ГНСС — что это такое?

Содержание

  1. Глобальная навигационная спутниковая система
  2. Перечень спутниковых навигационных систем различных стран мира
  3. Навигационное сообщение
  4. Независимый формат обмена навигационными данными (RINEX)

Спутниковая навигационная система использует спутники для определения геопространственного положения объекта. В нашей спутниковой системе, спутники размещаются на конкретных орбитах вокруг земного шара, чтобы точно определить, где находится приемник. Чтобы построить маршрут движения до нового места, мы часто используем карты Google Maps и следуем за ней с полной уверенностью, что она приведет нас к желаемому месту. Но как именно эта функция работает?
Эта система основана на передаче информации в зашифрованном виде, которую мы называем «навигационным сообщением», т. е. сообщением, отправленным спутником (космическим сегментом) на пользовательское устройство (пользовательский сегмент) после получения навигационных данных от наземных станций (контрольный сегмент).

Глобальная навигационная спутниковая система

ГНСС относится к группе спутников, которые ретранслируют сигналы из космоса для передачи данных о местоположении и времени на приемники ГНСС. Спутниковые навигационные системы различных стран функционируют в рамках ГНСС. В настоящее время, GPS стал настолько популярным, что люди ошибочно принимают каждую спутниковую систему за GPS.

Перечень спутниковых навигационных систем различных стран мира

  • Система глобального позиционирования, широко известная как GPS, является спутниковой навигационной системой США. GPS функционирует с 1978 года и предоставляет пользователям услуги позиционирования, навигации и синхронизации. Он состоит из трех сегментов, а именно: космического сегмента, управляющего сегмента и пользовательского сегмента.
  • Индийская региональная спутниковая система (IRNSS), широко известная как NavIc, является независимой региональной навигационной спутниковой системой. Она предназначена, главным образом, для индийских пользователей и предоставляет им точные информационные услуги о местоположении. Она также обслуживает тех, кто находится в радиусе 1500 км от Индийского субконтинента. Систеёма начала функционировать 1 июля 2013 года.
  • Квазизенитная спутниковая система (QZSS) — это японская спутниковая система, состоящая, в основном, из спутников на квазизенитных орбитах (QZO). Часто называемая «японской GPS», QZSS появилась на свет 1 ноября 2018 г.
  • Galileo — это спутниковая система Европейского Союза, впервые запущенная в 2011 г. Она обеспечивает точную информацию о времени и местоположении для европейских служб и пользователей.
  • BeiDou — это китайская спутниковая система, первый запуск которой состоялся 30 октября 2000 г.
  • ГЛОНАСС (глобальная спутниковая система) впервые была запущена 12 октября 1982 г и принадлежит России.

Навигационное сообщение

Навигационное сообщение — это сообщение, отправленное спутником пользователю после получения данных из управляющего сегмента. Для определения положения и скорости спутников, имеются три набора данных, которые передаются в виде навигационного сообщения, а именно: данные альманаха, транслируемые эфемериды и точные эфемериды («эфемерид» — это положение небесного тела в заданный период времени). Сообщения, передаваемые спутником, имеют формат RINEX, представляющий собой формат обмена данными для спутниковых систем.

Независимый формат обмена навигационными данными (RINEX)

Первое предложение по независимому формату обмена информацией (RINEX) было разработано в Бернском Астрономическом институте, с целью упрощения обмена собранными данными GPS. С момента его разработки, формат RINEX претерпел множество изменений и постоянно модифицируется. RINEX имеет три версии — RINEX version 1, RINEX version 2 и RINEX version 3, последняя из которых обновилась до RINEX 3.03.
Различные спутниковые системы посылают разные закодированные навигационные сообщения, поэтому для их расшифровки нужно знать, как дифференцировать и идентифицировать данное сообщение и использовать определенные алгоритмы для их декодирования (используются обычные понятия структуры данных).

Теперь вернемся к нашему вопросу о Google Maps, который использует GPS в качестве своей навигационной системы. Пользователь посылает сигналы на спутник через свое устройство с запросом направления к определенному месту назначения. Затем эти сигналы принимаются спутником и, используя спутниковые снимки, спутник посылает навигационное сообщение на устройство пользователя в зашифрованном формате. Затем это сообщение декодируется и используется приложением для того, чтобы привести нас к желаемому месту назначения.

Спутниковая навигация является важнейшей спутниковой системой, имеющая как коммерческое, так и стратегическое применение. Это имеет большое значение, когда речь заходит о национальной безопасности, т.к. они могут помочь в поиске враждебных сторон. Видя, насколько функциональны такие системы, многие страны постепенно разрабатывают свои собственные, чтобы избежать ненужной иностранной зависимости.

На видео: Как работает спутниковая система навигации?

Источник

Спутниковая система навигации

Question book-4.svg

Спутниковая система навигации — комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты) и времени, а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов.

Содержание

Основные элементы

Основные элементы спутниковой системы навигации:

  • Орбитальная группировка, состоящая из нескольких (от 2 до 30) спутников, излучающих специальные радиосигналы;
  • Наземная система управления и контроля (наземный сегмент), включающая блоки измерения текущего положения спутников и передачи на них полученной информации для корректировки информации об орбитах;
  • Приёмное клиентское оборудование («спутниковые навигаторы»), используемое для определения координат;
  • Опционально: наземная система радиомаяков, позволяющая значительно повысить точность определения координат.
  • Опционально: информационная радиосистема для передачи пользователям поправок, позволяющих значительно повысить точность определения координат.

Принцип работы

Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Таблица положений всех спутников называется альманахом, которым должен располагать любой спутниковый приёмник до начала измерений. Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел — мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве.

Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления возможности измерения времени распространяемого радиосигнала каждый спутник навигационной системы излучает сигналы точного времени, используя точно синхронизированные с системным временем атомные часы. При работе спутникового приёмника его часы синхронизируются с системным временем, и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Все остальные параметры движения (скорость, курс, пройденное расстояние) вычисляются на основе измерения времени, которое объект затратил на перемещение между двумя или более точками с определёнными координатами.

В реальности работа системы происходит значительно сложнее. Ниже перечислены некоторые проблемы, требующие специальных технических приёмов по их решению:

  • Отсутствие атомных часов в большинстве навигационных приёмников. Этот недостаток обычно устраняется требованием получения информации не менее чем с трёх (2-мерная навигация при известной высоте) или четырёх (3-мерная навигация) спутников; (При наличии сигнала хотя бы с одного спутника можно определить текущее время с хорошей точностью).
  • Неоднородность гравитационного поля Земли, влияющая на орбиты спутников;
  • Неоднородность атмосферы, из-за которой скорость и направление распространения радиоволн может меняться в некоторых пределах;
  • Отражения сигналов от наземных объектов, что особенно заметно в городе;
  • Невозможность разместить на спутниках передатчики большой мощности, из-за чего приём их сигналов возможен только в прямой видимости на открытом воздухе.
Читайте также:  Оборудования для домашний переработке шин

Применение систем навигации

Кроме навигации, координаты, получаемые благодаря спутниковым системам, используются в следующих отраслях:

  • Геодезия: с помощью систем навигации определяются точные координаты точек
  • Картография: системы навигации используется в гражданской и военной картографии
  • Навигация: с применением систем навигации осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью систем навигации ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах (например, США) это используется для оперативного определения местонахождения человека, звонящего 911. В России в 2010 году начата реализация аналогичного проекта — Эра-ГЛОНАСС.
  • Тектоника, Тектоника плит: с помощью систем навигации ведутся наблюдения движений и колебаний плит
  • Активный отдых: существуют различные игры, где применяются системы навигации, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам

Современное состояние

В настоящее время работают или готовятся к развёртыванию следующие системы спутниковой навигации:

Принадлежит министерству обороны США. Этот факт, по мнению некоторых государств, является её главным недостатком. Устройства поддерживающие навигацию по GPS являются самыми распространёнными в мире. Также известна под более ранним названием NAVSTAR.

ГЛОНАСС

Принадлежит министерству обороны России. Система, по заявлениям разработчиков наземного оборудования, будет обладать некоторыми техническими преимуществами по сравнению с GPS. После 1996 года спутниковая группировка сокращалась и к 2002 году практически полностью пришла в упадок. Была полностью восстановлена только в конце 2011 года. Отмечается малая распространенность клиентского оборудования. К 2025 году предполагается глубокая модернизация системы.

Бэйдоу

Развёртываемая Китаем подсистема GNSS предназначена для использования только в этой стране. Особенность — небольшое количество спутников, находящихся на геостационарной орбите. В настоящий момент выведено на орбиту Земли восемь навигационных спутников. Согласно планам, к 2012 году она сможет покрывать Азиатско-Тихоокеанский регион, а к 2020 году, когда количество спутников будет увеличено до 35, система «Бэйдоу» сможет работать как глобальная. Реализация данной программы началась в 2000 году. Первый спутник вышел на орбиту в 2007-ом.

Galileo

Европейская система, находящаяся на этапе создания спутниковой группировки. Планируется полностью развернуть спутниковую группировку к 2020 году.

IRNSS

Индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в этой стране. Первый спутник был запущен в 2008 году.

Первоначально японская QZSS была задумана в 2002 г. как коммерческая система с набором услуг для подвижной связи, вещания и широкого использования для навигации в Японии и соседних районах Юго-Восточной Азии. Первый запуск спутника для QZSS был запланирован на 2008 г. В марте 2006 японское правительство объявило, что первый спутник не будет предназначен для коммерческого использования и будет запущен целиком на бюджетные средства для отработки принятых решений в интересах обеспечения решения навигационных задач. Только после удачного завершения испытаний первого спутника начнётся второй этап и следующие спутники будут в полной мере обеспечивать запланированный ранее объём услуг.

Основные характеристики систем навигационных спутников

Технические детали работы систем

Рассмотрим некоторые особенности основных действующих систем спутниковой навигации (GPS и ГЛОНАСС):

    Обе системы имеют двойное назначение — военное и гражданское, поэтому излучают два вида сигналов: один с пониженной точностью определения координат (

100 м) для гражданского применения и другой высокой точности (

10-15 м и точнее) для военного применения. Для ограничения доступа к точной навигационной информации вводят специальные помехи, которые могут быть учтены после получения ключей от соответствующего военного ведомства (США для GPS и России для ГЛОНАСС). В настоящее время эти помехи отменены, и точный сигнал доступен гражданским приёмникам, однако в случае соответствующего решения государственных органов стран-владельцев военный код может быть снова заблокирован (в системе GPS это ограничение было отменено только в мае 2000 года и в любой момент может быть восстановлено).

  • Спутники GPS располагаются в шести плоскостях на высоте примерно 20 180 км. Спутники ГЛОНАСС (шифр «Ураган») находятся в трёх плоскостях на высоте примерно 19 100 км. Номинальное количество спутников в обеих системах — 24. Группировка GPS полностью укомплектована в апреле 1994-го и с тех пор поддерживается, группировка ГЛОНАСС была полностью развёрнута в декабре 1995-го, но с тех пор значительно деградировала. В 2011 году система ГЛОНАСС полностью восстановлена, количество спутников в группировке достигла 24 .В системе появился орбитальный резерв.
  • Обе системы используют сигналы на основе т. н. «псевдошумовых последовательностей», применение которых придаёт им высокую помехозащищённость и надёжность при невысокой мощности излучения передатчиков.
  • В соответствии с назначением, в каждой системе есть две базовые частоты — L1 (стандартной точности) и L2 (высокой точности). Для GPS L1=1575,42 МГц и L2=1227,6 МГц. В ГЛОНАСС используется частотное разделение сигналов, то есть каждый спутник работает на своей частоте и, соответственно, L1 находится в пределах от 1602,56 до 1615,5 МГц и L2 от 1246,43 до 1256,53.
  • Каждый спутник системы, помимо основной информации, передаёт также вспомогательную, необходимую для непрерывной работы приёмного оборудования. В эту категорию входит полный альманах всей спутниковой группировки, передаваемый последовательно в течение нескольких минут. Таким образом, старт приёмного устройства может быть достаточно быстрым, если он содержит актуальный альманах (порядка 1-й минуты) — это называется «тёплый старт», но может занять и до 15-ти минут, если приёмник вынужден получать полный альманах — т. н. «холодный старт». Необходимость в «холодном старте» возникает обычно при первом включении приёмника, либо если он долго не использовался.
  • Для подавления сигналов спутниковых навигационных систем используются передатчики активных помех. Впервые широкой общественности передатчики разработки российской компании «Авиаконверсия» были представлены в 1997 году на авиасалоне МАКС-1997. [1]
  • Дифференциальное измерение

    Отдельные модели спутниковых приёмников позволяют производить т. н. «дифференциальное измерение» расстояний между двумя точками с большой точностью (сантиметры). Для этого измеряется положение навигатора в двух точках с небольшим промежутком времени. При этом, хотя каждое такое измерение имеет точность порядка 10-15 метров без наземной системы корректировки и 10-50 см с такой системой, измеренное расстояние имеет погрешность намного меньшую, так как факторы, мешающие измерению (погрешность орбит спутников, неоднородность атмосферы в данном месте Земли и т. д.) в этом случае взаимно вычитаются. Кроме того, есть несколько систем, которые посылают уточняющую информацию («дифференциальную поправку к координатам»), позволяющую повысить точность измерения координат приёмника до десяти сантиметров. Дифференциальная поправка пересылается либо с геостационарных спутников, либо с наземных базовых станций, может быть платной (расшифровка сигнала возможна только одним определённым приёмником после оплаты «подписки на услугу») или бесплатной.

    В настоящее время (2009 год) существуют бесплатные американская система WAAS, европейская система EGNOS, японская система MSAS основанные на нескольких передающих коррекции геостационарных спутниках, позволяющих получить высокую точность (до 30 см).

    Запланировано создание системы коррекции для ГЛОНАСС под названием СДКМ.

    См. также

    Спутниковая система навигации на Викискладе ?
    • Спутниковый мониторинг транспорта
    • Время спутниковых навигационных систем
    • Геокэшинг
    • CDMA
    • GDOP
    • RINEX
    • Список новых перспективных технологий
    • Псевдоспутник

    Примечания

    1. Антидот против точных бомб. Рецепт от российской фирмы «Авиаконверсия». Журнал Defense Express #5, 2007.

    Ссылки

    Международный форум по спутниковой навигации Мероприятие, посвящённое вопросам спутниковой навигации

    Источник

    Спутниковая система навигации (GNSS)

    Системы GPS слежения

    Читайте также:  Молодечно магазин газового оборудования

    GNSS – это спутниковая навигационная технология, использующаяся для ориентирования на местности и отслеживания объектов. С ее помощью можно определить координаты независимо от времени суток и погодных условий. Благодаря этой системе всю информацию можно получать без видимых ориентиров за короткое время и с высокой точностью. Спутниковые программы мировых стран работают в рамках ГНСС.

    1. Общая характеристика GNSS
    2. Предназначение
    3. Принцип работы
    4. Основные составляющие
    5. Обзор действующих спутниковых систем навигации
    6. GPS
    7. ГЛОНАСС
    8. DORIS
    9. Beidou
    10. Galileo
    11. Региональные спутниковые навигационные системы
    12. Поддержка ГНСС
    13. Ключевые параметры GNSS-приемников
    14. Методы ГНСС-наблюдений

    Общая характеристика GNSS

    ГНСС, или глобальные навигационные спутниковые системы, передают информацию о расположении, времени и скорости пользующимся определенными приборами пользователям на Земле, в воздухе или космическом пространстве. Чтобы реализовать функции системы, используют спутники, которые выполняют измерение местоположения с точностью до метра.

    Предназначение

    Изначально технология разрабатывалась для отслеживания военных объектов. Позже для сигнала, получаемого от спутников, нашли применение в обычной жизни. Он облегчает передвижение на земле, в воздухе, водном пространстве. С помощью спутниковых систем выясняют также скорость, направление движения объекта. Еще они обеспечивают определение точного времени.

    Функционирование технологии достигается устройствами управления, расположенными на Земле и в космосе. Регулярно специалисты осуществляют оценку точности ГНСС-наблюдений для повышения качества информации.

    Принцип работы

    Навигационные системы измеряют расстояние от антенны на объекте до спутника, положение которого точно известно. Информация о местонахождении последних внесена в таблицу, которую называют альманахом. Приемник сохраняет данные в памяти и использует их для работы.

    Каждый сигнал спутника включает передачу и всего альманаха. Благодаря информации о расстоянии до нескольких спутников и применению геометрических построений оборудование вычисляет положение объекта. Измеряться данные будут с высокой точностью за счет того, что скорость движения радиоволн известна.

    Чтобы определить время, которое распространяет радиосигнал, все спутниковые системы излучают сигналы с использованием атомных часов. Они синхронизируются с системным временем. Эта информация позволяет определить координаты антенны.

    Основные составляющие

    ГНСС состоит из нескольких элементов:

    • спутников, двигающихся по орбите;
    • оборудования на Земле для контроля работы и управления;
    • спутниковых навигаторов;
    • радиомаяков, обеспечивающих точные координаты;
    • радиосистем, передающих поправки пользователям.

    Обзор действующих спутниковых систем навигации

    Глобальными спутниковыми системами являются ГЛОНАСС (Россия) и GPS (США). Разработкой технологий занимаются также страны Европы, Китай, Индия. Их основное оборудование не достигло уровня американских систем, но специалисты трудятся над этим.

    Спутниковые системы

    Это навигационная система США, работающая с 1978 года. Она выполняет позиционирование, навигацию и синхронизацию, состоит из космического, управляющего и пользовательского сегмента. Систему разработало и реализовало Министерство обороны США. Сейчас она доступна и для обычных граждан – им достаточно только купить телефон на ОС «Андроид» или планшет с GPS-датчиком.

    Спутники транслируют сигнал с космоса, приемники используют его для вычисления координат и наблюдения за объектом в режиме реального времени. В технологии применяется 32 спутника, которые вращаются по орбите Земли.

    ГЛОНАСС

    С помощью системы определяют расположение и скорость движения авиации, морского, наземного и космического транспорта. Испытание оборудования и строительство спутников начали в 1995 году, но недостаточное финансирование не позволило ГЛОНАСС обрести глобальный характер.

    Полноценное функционирование началось в 2010 году. Сейчас спутники активно взаимодействуют с GPS. Они подключаются к ближайшим объектам, что увеличивает скорость работы, точность.

    DORIS

    Преимущество технологии – в высокоточном определении орбиты и отслеживании маяков. Это система микроволнового слежения, основанная на принципе Доплера. Цель ее работы – измерения для услуг POD и приложений геодезии. Также она способна в один заход определить координаты орбит, осуществить геофизическое моделирование и позиционирование наземных маяков.

    Beidou

    Это китайская технология для осуществления геодезических, метрологических и других наблюдений за объектом. Оборудование включает около 38 спутников. Планируется, что на полную мощность система выйдет в 2020 году, поэтому ее характеристики стараются улучшить. Обеспечивает геометрическую сеть GNSS-наблюдений.

    Galileo

    Использование системы распространено среди обычных граждан и служб стран Европы. Отличие от ГНСС США и России в том, что ее не контролируют национальные военные ведомства. Но допускается возможность использовать сигнал для операций для обеспечения политики безопасности.

    К сведению. Регулярно выполняется поверка работы оборудования. Оно обеспечивает точность до метра, а временная погрешность составляет миллиардную долю секунды.

    В перечисленных технологиях пользуются различными, чаще национальными, системами координат.

    Навигационная система Система координат
    ГЛОНАСС ПЗ-90 (Параметры Земли 1990 года)
    GPS WGS-84 (World Geodetic System)
    Система координат ГАЛИЛЕО GTRF (Galileo Terrestrial Referenfce Frame)
    БЕЙДОУ CGCS2000 (China Geodetic Coordinate System 2000)

    Региональные спутниковые навигационные системы

    Основное преимущество использования спутниковых ГНСС-технологий заключается в повышенной точности определения местонахождения объектов, скорости движения и времени. Существуют также региональные системы:

    1. IRNSS. Это индийская программа, которая подходит для эксплуатации только на территории страны. Технические параметры не позволяют охватывать большую площадь и частоту. Система состоит из пяти спутников.
    2. QZSS. Среди услуг, оказываемых японской технологией: подвижная связь, вещание и использование для навигации.

    Планируется создание трех группировок, посадка которых предполагается на геосинхронные орбиты.

    Поддержка ГНСС

    Чтобы в айфонах и смартфонах функционировала технология ГНСС, в электронных устройствах должны присутствовать приемники определенного типа:

    1. Смарт-антенны. Датчик состоит из керамической антенны и навигационного приемника. Это компактный вариант, не требующий согласования.
    2. MCM. Это чип, в комплект с которым входят все элементы навигационных приемников.
    3. ОЕМ. Представляет собой экранированную плату с интерфейсным процессором и процессором частот.

    Включение всех измерений технологии ГНСС не занимает много времени, настройка заключается в подключении к микроконтроллеру или системе на кристалле по соответствующему интерфейсу. В автомобилях эту функцию регистрации выполняет тахограф.

    Ключевые параметры GNSS-приемников

    Расшифровка требуемых показателей возможна после того, как приемник получит данные о:

    • сигналах со спутника;
    • альманахе, в котором указаны приблизительные параметры орбит всех спутников;
    • эфемеридах, точных параметрах орбит и часов всех спутников.

    Оценка характеристик зависит от TTFF. Этот параметр показывает, за какой период времени приемник найдет сигнал от спутника и определит координаты. Если это новое устройство, оно было отключено или длительное время перевозилось, после включения получить необходимые данные сразу невозможно.

    Чтоб улучшить этот показатель и повысить эффективность циклического процесса, производители устанавливают возможность скачать и сохранить альманах и эфемериды по беспроводной сети передачи данных. Это занимает меньше времени, чем если извлекать показания из сигналов ГНСС. Скачивание доступно бесплатно.

    К сведению. Такие модули потребляют разное количество энергии. Когда устройство находится в фазе поиска спутников, расходует ее больше. Производители пытаются исправить ситуацию за счет периодического перехода конструкции в режим сна.

    Встречаются конфигурации с динамическими характеристиками. Например, он помогает узнать показатели ускорения объекта. Эти элементы часто имеют пару приемных каналов. Их число достигает 88.

    Методы ГНСС-наблюдений

    Расположение по спутниковым системам определяется с высокой точностью до 15 м. Такие показатели связаны с воздействием атмосферных явлений на распространение радиосигнала, уровнем качества кварцевого генератора в приемнике.

    Различаются следующие методы наблюдений: абсолютный, относительный. В первом случае положение приемника определяется по пространственной засечке. При этом нужно знать координаты хотя бы 4 спутников, величину псевдодальности. Точность измерений составляет 3–15 м.

    При относительном методе (DGPS) для наблюдений используется 2 приемника. Один находится в месте с известными координатами, другой – на определяемом. При этом рассчитывается псевдодальность, поправка передается на ровер. Метод подходит для решения задач в геодезии.

    При обоих методах наблюдения используются постобработка, определение координат в реальном времени. В первом случае необходимы ПК, специальная программа. При определении координат в реальном времени обработка осуществляется сразу, в управляющем микропрограммном обеспечении приемника.

    Спутниковая навигация играет стратегическую и коммерческую роль. Технология позволяет увеличить национальную безопасность, быстрее обнаружить «вражеские» стороны. Благодаря функциональности таких технологий больше стран занимается собственными устройствами навигации, чтобы не зависеть от других государств.

    Источник