Меню

Оборудование для pci express



Разъем PCI Express: что такое интерфейс PCIe?

PCI Express, полное техническое название «Peripheral Component Interconnect Express», но зачастую воспринимаемый сокращенной аббревиатурой PCIe или PCI-E, это стандартный тип подключения для внутренних девайсов, такие как видеокарты, звуковые карты, wifi адаптеры и прочих периферийных устройств на персональном компьютере.

Разбираемся в различиях PCI-E разъема.

Как правило, данный высокоскоростной порт относится к фактическим слотам расширения на материнской плате, которые принимают платы расширения на основе традиционного PCIe и типы карт расширения.

PCI Express практически заменил AGP и PCI, оба из которых заменили старейший широко используемый тип соединения, называемый ISA. Хотя пк могут содержать различные слоты расширения, PCI Express считается стандартным внутренним интерфейсом самого быстрого разъема. Сегодня многие материнские платы для персональных компьютеров производятся только с разъемами PCI Express.

Как работает PCI Express?

Подобно старым стандартам, таким как PCI и AGP, устройство на базе Express физически переходит в высокоскоростной разъем на материнской плате.

Интерфейс этого разъема обеспечивает высокоскоростную связь между устройством и системной платой, а также другим оборудованием.

Хотя это не очень распространено, также существует внешняя версия высокоскоростного порта, что неудивительно называется External PCI Express, но часто сокращается до PCIe. Для устройств ePCIe, являющихся внешними, требуется специальный кабель для подключения любого внешнего устройства PCIe к пк через порт PCIe, обычно расположенный на задней панели пк, поставляемый либо материнской платой, либо специальной внутренней PCIe-картой.

Какие типы карт PCI Express существуют?

Благодаря требованию более быстрых, реалистичных видеоигр и инструментов редактирования видео, видеокарты были первыми типами компьютерной периферии, чтобы воспользоваться преимуществами, предлагаемыми непосредственно PCIe.

В то время как видеокарты по-прежнему остаются наиболее распространенным типом PCIe-карты, вы обнаружите, что другие девайсы, которые значительно быстрее подключаются к системной плате, процессору и ОЗУ. Также все чаще производятся PCIe-соединения вместо обычного PCI. Например, многие высококачественные звуковые карты теперь используют высокоскоростной порт, а также повышают количество проводных и беспроводных сетевых интерфейсных карт.

Карты контроллера жесткого диска могут быть наиболее полезными для PCI-E после видеокарты. Подключение высокоскоростного PCIe SSD-накопителя к этому высокоскоростному интерфейсу позволяет значительно быстрее считывать, потом записывать диск. Некоторые контроллеры жестких дисков PCIe даже включают встроенный SSD, сильно изменяя, как устройства хранения традиционно подключены внутри пк.

Конечно, замена PCIe на PCI и AGP полностью на более новые системные платы, почти каждый тип внутренней карты расширения, основанной на старых интерфейсах, перестраивается для возможности использования шины PCI Express. Это включает в себя такие вещи, как карты расширения USB, карты Bluetooth и т.д.

Каковы различные форматы PCI Express?

Express x1 . Express 3.0 . Express x16. Что означает «х»? Как узнаете, поддерживает ли ваш пк? Если есть карта PCI Express x1, и есть только разъем Express x16, совместимо ли это работает? Если нет, каковы ваши варианты?

Часто не совсем понятно, когда вы покупаете карту расширения для своего компьютера, такую ​​как новая видеокарта, какая из различных технологий PCIe работает с вашим пк лучше, чем другая. Однако, насколько это сложно, все выглядит довольно просто, как только вы поймете две важные части информации о высокоскоростном порте: часть, описывающую физический размер, и часть, описывающую технологическую версию, как описано ниже.

Размеры PCIe: x16, x8, x4, и x1

Как следует из заголовка, число после x указывает физический размер платы PCI-E или слота, причем x16 самый большой, а x1 наименьший.

Вот как формируются различные размеры:

Количество контактов Длина
PCI Express x1 18 25 мм
PCI Express x8 49 56 мм
PCI Express x16 82 89 мм

Независимо от размера высокоскоростного порта или карты, ключевой вырез, это небольшое место в карте или слоте, всегда находится на выводе 11. То есть, длина вывода 11 продолжает увеличиваться по мере перехода от PCIe x1 к PCIe x16. Это позволяет гибко использовать карты одного размера вместе со слотами другого.

Карты PCIe подходят в любом слоте высокопроизводительного порта на системной плате, который по крайней мере такой же большой. Например, карта PCIe x1 будет входить в любой слот PCIe x4, PCIe x8 или PCIe x16. Карта PCIe x8 будет входить в любой слот PCIe x8 или PCIe x16. PCIe-карты, размер которых больше, чем слот PCIe, могут входить в меньший слот, но только если этот слот PCI-E открытый (т.е. Не имеет пробки в конце гнезда).

В целом, большая плата Express или слот поддерживает большую производительность, предполагая, что две карты или слоты, которые сравниваете, поддерживают одну и ту же версию PCIe.

Версия PCIe: 4.0, 3.0, 2.0 и 1.0

Любое число после PCIe, которое вы найдете на устройстве или системной плате, указывает номер последней версии используемой спецификации PCI Express.

Вот как сравниваются различные версии контроллера PCI Express:

Пропускная способность (на полосу) Пропускная способность (на полосу в слоте x16)
PCI Express 1.0 2 Гбит/с (250 МБ/с) 32 Гбит/с (4000 МБ/с)
PCI Express 2.0 4 Гбит/с (500 МБ/с) 64 Гбит/с (8000 МБ/с)
PCI Express 3.0 7.877 Гбит/с (984,625 МБ/с) 126,032 Гбит/с (15754 МБ/с)
PCI Express 4.0 15.752 Гбит/с (1969 МБ/с) 252,032 Гбит/с (31504 МБ/с)

Все версии высокоскоростного порта совместимы в обратном и обратном направлении, что означает независимо от того, какую версию поддерживает плата PCIe или ваша материнская плата, они должны работать вместе, по крайней мере, на минимальном уровне. Как можно заметить, основные обновления стандарта порта резко увеличивают пропускную способность каждый раз, значительно увеличивая потенциал того, что может сделать связанное оборудование.

Улучшения версии также устраняют ошибки, добавленные функции и улучшенное управление питанием, но увеличение полосы пропускной способности это самое важное изменение для заметок от версии к версии.

Максимизация совместимости совместно с PCIe

Как вы читаете в разделах размеров и версий выше, использует практически любую конфигурацию, которую вы можете себе представить. Если он физически подходит, он вероятно, работает . это здорово. Однако важно знать, что для увеличения пропускной способности (которая обычно соответствует максимальной производительности) вам нужно выбрать самую высокую версию PCIe, поддерживаемую вашей материнской платой, и выбрать самый большой размер данного порта, который будет соответствовать.

Например, графическая карта на высокоскоростном порту 3.0 x16 даст вам максимальную производительность, но только если материнская плата поддерживает высокоскоростной порт версии 3.0 и имеет свободный высокоскоростной порт x16. Если модель системной платы использует исключительно PCIe 2.0, карта будет работать только с поддерживаемой скоростью (например, 64 Гбит/с в слоте x16).

Большинство материнских плат и персональных компьютеров, выпущенных в 2013 году или позже, вероятно, поддерживают Express v3.0. Если вы не уверены, проверьте руководство по материнской плате или пк. Если не получается найти какую-либо окончательную информацию о версии PCI, возможности использования вашей материнской платой, я рекомендую купить самую большую и последнюю версию PCIe-карты, если она подойдет, конечно.

Что заменит PCIe?

Разработчики видеоигр всегда ищут игры, которые становятся все более реалистичными, но могут сделать это только в том случае, если они смогут передавать больше данных из своих игровых программ в гарнитуру VR или на экран пк, и для этого требуются более быстрые интерфейсы. Из-за этого PCI Express никак не будет продолжать господствовать над своими лаврами. PCI Express 3.0 удивительно быстрый, но мир стремится сделать невероятно быструю передачу.

PCI Express 5.0, который должен быть завершен к 2019 году, будет использовать пропускную способность 31,504 гигабит в секунду на полосу (3938 мегабайт в секунду), что в два раза больше, чем предлагается у высокоскоростного разъема версии 4.0. Существует ряд других стандартов интерфейса, отличных от PCIe, на которые смотрит технологическая индустрия, но поскольку для них потребуются серьезные аппаратные изменения, PCIe, похоже останется лидером в течение некоторого, очень продолжительного времени как самый быстрый из существующих когда-либо.

Источник

Технология PCI Express «в разрезе»: что, зачем и почему

Совсем немного времени осталось до появления новых чипсетов Intel, а вместе с ними придет и новый стандарт – PCI Express. О том, что это, какими преимуществами и недостатками обладает, вы можете узнать из этой статьи.

Любая компьютерная технология проходит свой путь от рождения, триумфа к свалке истории. Все бы ничего, да каждое очередное нововведение, как правило, чревато серьезным перетряхиванием системных блоков и неопределенностью в умах пользователей – пора или еще подождать с апгрейдом? Тем более огромными кажутся все новшества, которые свалятся на головы покупателей в нынешнем году. Такого всестороннего разрушительного действия на основы платформы не было уже давно — сменятся процессорные разъемы (у Intel настанет время Socket 775, у AMD, соответственно, Socket 939); к концу года действительно новой будет называться система лишь с 240-контактными модулями DDR2; вдогонку ко всему этому близится появление новых форм-факторов самих плат – BTX. Но самым радикальным все же станет низвержение старых привычных элементов ландшафта системной платы – разъемов PCI и AGP, которым приходит время сказать последнее «прости-прощай».

Новое поколение технологий приносит новые скорости и новые технологические решения. Правда, на деле случалось не раз, что революционные нововведения оказывались не всегда своевременными и не такими уж полезными, как красиво заявлялось при их выпуске. Традиционно, отдуваться за эксперименты приходится конечному покупателю. Примеров самых передовых, но неоцененных или невостребованных технологий можно привести множество – шина EISA, память RDRAM, слоты AMR/CNR и многое другое.

Не касаясь тупиковых ветвей эволюции ПК, сегодня стоит поговорить о своевременности внедрения новых технологий на примере шины PCI Express. Сегодня можно с уверенностью сказать, что от перехода на этот шинный стандарт никуда не деться. Попробуем рассмотреть ключевые особенности новоявленной шины, ее сходства и отличия от распространенных сейчас PCI и AGP.

Прежде всего, не стоит рассматривать PCI Express как банального наследника традиций PCI. Консорциум разработчиков нового интерфейса, ранее носившего название 3GIO, ставил перед собой цель разработать новую высокоскоростную шину с максимальной масштабируемостью, простой разводкой, низким уровнем паразитных излучений и электромагнитных помех. Это лишь краткий перечень требований к новому интерфейсу, некоторые особенности его реализации в конкретных условиях, как, например, поддержка «горячего» подключения, требуются лишь в определенных специфических приложениях. Сначала —

Читайте также:  Медицинское оборудование медицинские вузы

Немного истории

Первые разработки шины PCI, стартовавшие в начале 90-х годов, были призваны избавиться от множества присутствовавших на тот момент несовместимых шинных интерфейсов – VLB (VESA Local Bus), EISA, ISA и Micro Channel. Наряду с этим преследовалась цель избавиться от тяжкого наследия фрагментированной шины ISA и впервые добиться соединений класса «чип-чип».

На момент появления в 1993 году базовой версии шины Peripheral Component Interconnect (PCI) — IEEE P1386.1, предусматривались революционные усовершенствования: расширение шины данных до 32 бит, поддержка адресации до 4 ГБ данных (32 бита), а также использование режима синхронного обмена данными. По тем временам тактовая частота шины 33 МГц удовлетворяла условиям работы с периферией в настольных и серверных системах, все были довольны. Последовавший за этим резкий скачок тактовых частот процессоров и памяти привел к увеличению тактовой частоты PCI до 66 МГц, хотя, тактовые частоты процессоров за этот же период скакнули с 33 МГц до 3,0+ ГГц. Все последующие варианты PCI – AGP, PCI-X, MiniPCI, CardBus, несмотря на привнесение определенных дополнений, например, иных форм-факторов разъемов, новых сигнальных уровней и даже передачи данных по фронтам импульса (Double Data Rate/ Quadruple Data Rate), тем не менее, несли в себе ограничения, накладываемые самой топологией интерфейса.

Возможности наращивания пропускной способности шины PCI за счет увеличения тактовой частоты без усложнения схем разводки и соответствующего адекватного удорожания к настоящему времени исчерпаны полностью. А ведь на очереди появились такие актуальные интерфейсы, как 1/10 Gigabit Ethernet, IEEE 1394B, которые полностью выбирают пропускную возможность шины одним устройством и даже выходят за эти рамки. PCI душит рост скорости периферии, критичными становятся ограничения по числу сигнальных контактов шины, торможение процессов реального времени и требования по энергосбережению современных ПК. Если вспомнить наиболее производительные версии шины PCI, например, серверную PCI-X и графическую AGP, то в этом случае мы упираемся в укорачивание проводников шины за счет высокой частоты, требование к установке своего контроллера на каждый слот и достаточно высокую стоимость ее реализации.

Грядет тотальное торжество последовательных шин

Итого, параллельные шины себя исчерпали, рано или поздно взоры разработчиков должны были обратиться в сторону последовательных. Так оно и есть, в результате чего практически все современные индустриальные интерфейсы к настоящему времени перебрались на такой принцип обмена данными. Взгляните на приведенную ниже таблицу: речь идет не только о сетевых интерфейсах, которым на роду написано быть последовательными; все остальные ключевые шины уже имеют последовательную природу.

Между прочим, внешние интерфейсы уже давно перебрались на последовательную топологию, и в самых своих свежих реализациях – USB 2.0, IEEE1394b, показывают скорости, которые немыслимы для параллельных соединений. С этой точки зрения шина PCI в наших компьютерах действительно, выглядит своеобразным анахронизмом.

Особенности PCI Express

Основой нового интерфейса, как известно, в общем случае будут являться дифференциальные сигнальные пары контактов, совершающие обмен данными по схеме «точка-точка». Благодаря новой топологии мы сразу получаем массу положительных моментов: удешевление конструкции, снижение габаритов, более простая разводка печатных дорожек с упрощенными требованиями к борьбе с паразитными излучениями, и, главное, возможность работы на гораздо более высоких частотах, с поддержкой «горячей» замены периферийных устройств. Уходит в прошлое такой важный для параллельного интерфейса параметр, как нужда в синхронизации сигнальных линий всей шины.

Архитектуру PCI Express можно рассматривать послойно, в сравнении с адресной моделью PCI. Конфигурация PCI Express является стандартной для устройств, определенных plug-and-play спецификациями PCI: программный уровень генерирует запросы чтения/записи, уровень транзакций транспортирует эти запросы к периферийным устройствам с помощью разделенного пакетного протокола. Для поддержания высокой производительности шины соединительный (link) уровень добавляет пакетам очередность и CRC; базовый физический уровень состоит из двойного симплексного канала, осуществляющего функции приемной и передающей пары. Таким образом, исходная скорость 2,5 Гб/с в каждом направлении позволяет говорить о создании дуплексного коммуникационного канала производительностью до 200 МБ/с, что в четыре раза превышает возможности классической шины PCI.

Рассматривая процессы, протекающие в шине на сигнальном уровне, нельзя не отметить уникальные плюсы PCI Express — значительное снижение затухания в линиях передачи и повышенная чувствительность приемной части интерфейса. Из чего напрашивается вывод о менее критичных требованиях к импедансу входных цепей, а также возможность увеличения длины разводки проводников шины — в нынешней версии стандарта PCI-E они лимитируются 12 дюймами для системных плат, 3,5 дюймами для контроллеров и 15 дюймами для межчиповых соединений. При этом не предъявляется никаких дополнительных требований к технологии разводки печатной платы: могут использоваться как обычные 4-слойные PCB толщиной 0,062 дюйма, так и варианты с шестью и более слоями.

Источник

В чем отличия PCI Express x16, x8, x4 и x1?

отличия PCI Express x16, x8, x4 и x1

Стандарт PCI Express является одной из основ современных компьютеров. Слоты PCI Express уже давно занимают прочное место на любой материнской плате декстопного компьютера, вытесняя другие стандарты, например, такие как PCI. Но даже стандарт PCI Express имеет свои разновидности и отличающийся друг от друга характер подключения. На новых материнских платах, начиная примерно с 2010 года, можно увидеть на одной материнской плате целую россыпь портов, обозначенных как PCIE или PCI-E, которые могут отличаться по количеству линий: одной x1 или нескольких x2, x4, x8, x12, x16 и x32.

Итак, давайте выясним почему такая путаница среди казалось бы простого периферийного порта PCI Express. И какое предназначение у каждого стандарта PCI Express x2, x4, x8, x12, x16 и x32?

Что такое шина PCI Express?

В далеких 2000-х, когда состоялся переход с устаревающего стандарта PCI (расш. — взаимосвязь периферийных компонентов) на PCI Express, у последнего было одно огромное преимущество: вместо последовательной шины, которой и была PCI, использовалась двухточечная шина доступа. Это означало, что каждый отдельный порт PCI и установленные в него карты, могли в полной мере использовать максимальную пропускную способность не мешая друг другу, как это происходило при подключении к PCI. В те времена количество периферийных устройств, вставляемых в карты расширения, было предостаточно. Сетевые карты, аудио карты, ТВ-тюнеры и так далее — все требовали достаточное количество ресурсов ПК. Но в отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, если рассматривать в общем, является пакетной сетью с топологией типа звезда.

PCIE x16, PCIE x1 и PCI

PCI Express x16, PCI Express x1 и PCI на одной плате

С точки зрения непрофессионала, представьте свой настольный ПК в качестве небольшого магазина с одним, двумя продавцами. Старый стандарт PCI был как гастроном: все ожидали в одной очереди, чтобы их обслужили, испытывая проблемы со скоростью обслуживания с ограничением в лице одного продавца за прилавком. PCI-E больше похож на гипермаркет: каждый покупатель движется за продуктами по своему индивидуальному маршруту, а на кассе сразу несколько кассиров принимают заказ.

Очевидно, что гипермаркет по скорости обслуживания выигрывает в несколько раз у обычного магазина, благодаря тому, что магазин не может себе позволить пропускную способность больше чем один продавец с одной кассой.

Также и с выделенными полосами передачи данных для каждой карты расширения или встроенными компонентами материнской платы.

Влияние количества линий на пропускную способность

Теперь, чтобы расширить нашу метафору с магазином и гипермаркетом, представьте, что каждый отдел гипремаркета имеет своих кассиров, зарезервированных только для них. Вот тут-то и возникает идея нескольких полос передачи данных.

PCI-E прошел множество изменений со времени своего создания. В настоящее время новые материнские платы обычно используют уже 3 версию стандарта, причем более быстрая 4 версия становится все более распространенной, а версия 5 ожидается в 2019 году. Но разные версии используют одни и те же физические соединения, и эти соединения могут быть выполнены в четырех основных размерах : x1, x4, x8 и x16. (x32-порты существуют, но крайне редко встречаются на материнских платах обычных компьютерах).

Различные физические размеры портов PCI-Express позволяют четко разделить их по количеству одновременных соединений с материнской платой: чем больше порт физически, тем больше максимальных подключений он способен передать на карту или обратно. Эти соединения еще называют линиями. Одну линию можно представить как дорожку, состоящею из двух сигнальных пар: одна для отправки данных, а другая для приема.

Различные версии стандарта PCI-E позволяют использовать разные скорости на каждой полосе. Но, вообще говоря, чем больше полос находится на одном PCI-E-порту, тем быстрее данные могут перетекать между периферийной и остальной частью компьютера.

Возвращаясь к нашей метафоре: если речь идёт об одном продавце в магазине, то полоса x1 и будет этим единственным продавцом, обслуживающим одного клиента. У магазина с 4-мя кассирами — уже 4 линии х4. И так далее можно расписать кассиров по количеству линий, умножая на 2.

Различные карты PCI Express

Типы устройств, использующих PCI Express x2, x4, x8, x12, x16 и x32

Для версии PCI Express 3.0 общая максимальная скорость передачи данных составляет 8 ГТ/с (Гигатранзакций/с), В реальности же скорость для версии PCI-E 3 чуть меньше одного гигабайта в секунду на одну полосу.

Таким образом, устройство, использующее порт PCI-E x1, например, маломощная звуковая карта или Wi-Fi-антенна смогут передавать данные с максимальной скоростью в 1 Гбит/с.

Карта, которая физически подходит в более крупный слот — x4 или x8, например, карта расширения USB 3.0, сможет передавать данные в четыре или восемь раз быстрее соответственно.

Скорость передачи портов PCI-E x16 теоретически ограничивается максимальной полосой пропуская в размере около 15 Гбит/с. Этого более чем достаточно в 2017 года для всех современных графических видеокарт, разработанных NVIDIA и AMD.

Большинство дискретных видеокарт используют слот PCI-E x16

Протокол PCI Express 4.0 позволяет использовать уже 16 ГТ/с(Гигатранзакций/с), а PCI Express 5.0 будет задействовать 32 ГТ/с (Гигатранзакций/с).

Но в настоящее время не существует компонентов, которые смогли бы использовать такое количество полос с максимальной пропускной способностью. Современные топовые графические карты обычно используют x16 стандарта PCI Express 3.0. Нет смысла использовать те же полосы и для сетевой карты, которая на порту x16 будет использовать только одну линию, так как порт Ethernet способен передавать данные только до одного гигабита в секунду (что, около одной восьмой пропускной способности одной PCI-E полосы — помните: восемь бит в одном байте).

Читайте также:  Производство доски и бруса оборудование

На рынке можно найти твердотельные накопители PCI-E, которые поддерживают порт x4, но они, похоже, скоро будут вытеснены быстро развивающимся новым стандартом M.2. для твердотельных накопителей, которые также могут использовать шину PCI-E. Высококачественные сетевые карты и оборудование для энтузиастов, такие как RAID-контроллеры, используют сочетание форматов x4 и x8.

Размеры портов и линий PCI-E могут различаться

Это одна из наиболее запутанных задач по PCI-E: порт может быть выполнен размером в форм-факторе x16, но иметь недостаточное количество полос для пропуска данных, например, всего например x4. Это связано с тем, что даже если PCI-E может нести на себе неограниченное количество отдельных соединений, все же существует практический предел пропускной способности полосы пропускания чипсета. Более дешевые материнские платы с более бюджетными чипсетами могут иметь только один слот x8, даже если этот слот может физически разместить карту форм-фактора x16.

Кроме того, материнские платы, ориентированные на геймеров, включают до четырех полных слотов PCI-E с x16 и столько же линий для максимальной пропускной способности.

пять слотов PCI-E x16

Очевидно, это может вызывать проблемы. Если материнская плата имеет два слота размером x16, но один из них имеет только полосы x4, то подключение новой графической карты снизит производительность первой аж на 75%. Это, конечно, только теоретический результат. Архитектура материнских плат такова, что Вы не увидите резкого снижения производительности.

Правильная конфигурация двух графических видео карт должна задействовать именно два слота x16, если Вы хотите максимального комфорта от тандема двух видеокарт. Выяснить сколько линий на Вашей материнской плате имеет тот или иной слот поможет руководство на оф. сайте производителя.

Иногда производители даже помечают на текстолите материнской платы рядом со слотом количество линий

метки на материнской плате PCI Express x1 и x4

Нужно знать, что более короткая карта x1 или x4 может физически вписаться в более длинный слот x8 или x16. Конфигурация контактов электрических контактов делает это возможным. Естественно, если карта физически больше, чем слот, то вставить ее не получится.

Поэтому помните, при покупке карт расширения или обновления текущих необходимо всегда помнить как размер слота PCI Express, так и количество необходимых полос.

Источник

PCI Express — о чём редко говорят маркетологи, и во что упираются энтузиасты

Многие продвинутые пользователи ПК и, особенно, энтузиасты мощных конфигураций сталкиваются с ситуацией, когда производительные и скоростные устройства почему-то оказываются совсем не производительными.
Так, например, после установки в систему второй видеокарты, игры с поддержкой SLI/CF начинают работать значительно быстрее, а без поддержки медленнее, чем до добавления второго ГПУ (на самом деле не лучший пример, к нему вернёмся позже). Или фактическая производительность массива из быстрых SSD оказывается значительно медленнее расчётной.
Ответ лежит на поверхности — причина в PCI Express.
Многим знакомо это название как разъём на материнской плате, в который можно навтыкать периферийных устройств, от видео и сетевых карт, до различных контроллеров и специализированных решений. Но это только вершина айсберга.

PCI-E — это линия обмена данными между процессором и устройствами. На сегодняшний день активно используются две ревизии PCI-E — это 2.0 и 3.0. Их отличие в объёме данных, которым могут обмениваться процессор и устройства за одну секунду.

Одна линия PCI-E 2.0 способна передать от/к процессору

500Мегабайт в секунду
Одна линия PCI-E 3.0 способна передать от/к процессору

1000Мегабайт в секунду

Много это или мало? Безусловно много! Так в чём же проблема?

А проблема в том, что у всех потребительских процессоров (включая новейший AMD Ryzen, но не считая топовых Core i7 c 6-ю и более ядрами) только 16 линий PCI-E.
И все эти 16 линий отдаются видеокарте. Причём если последних две, то каждая в отдельности получает лишь 8 линий и уже не может работать в режиме максимальной производительности (длительное тестирование показало, что загрузка шины видеокарты с 16-ю линиями почти никогда не превышает 50%, а следовательно для большинства игр 8-ми линий всё-таки хватит).
А как же остальные устройства? Для этого у процессора есть ещё 4 линии (у Intel DMI шина),через которую он подключается к чипсету материнской платы, который, в свою очередь, обеспечивает работу всей периферией.

До архитектуры SkyLake версия DMI 2.0 = 4x PCI-E 2.0 =

2ГБ в секунду
Начиная с архитектуры Skylake версия DMI 3.0 = 4x PCI-E 3.0 =

Т.е. в лучшем случае на все комплектующие кроме видеокарты выделяется полоса в 4ГБ/с, которую они делят между собой, причём, зачастую, фиксировано. Например M.2 PCI-E SSD диcки рассчитаны на работу с 4-мя линиями PCI-E 3.0 и способны выдавать скорость до 4ГБ в секунду. Но, если такой диск не подключён напрямую к процессору, а в пользовательских системах именно так и происходит, его скорость составит не более 2ГБ в секунду, даже если в спецификации написано намного больше. Или, например, массив из нескольких SATA SSD дисков, если его контроллер не подключен вместо видеокарты, также не даст производительности более 1.5ГБ в секунду. Тоже касается USB 3.1 и других скоростных интерфейсов.

Какой же из этого следует вывод? Собирая компьютер или устанавливая высокоскоростные компоненты убедитесь, что количество PCI-E линий не станет бутылочным горлышком вашей системы. В противном случае обратите внимание на более высокий класс процессоров (Intel c суффиксом -E или -EP), где количество линий непосредственно с процессора составляет 28 или даже 40 штук.

Источник

PCI Express 4.0, кабели и все-все-все

Раз уж мы затронули немножко в комментариях к предыдущей статье тему расширения PCI Express и вывода шины за пределы шасси, следует наверное рассказать об этом чуть подробнее.

Начнем издалека – с истории PCI Express вообще и нюансов с этим связанных. Спецификация первой ревизии появилась в далеком 2003 году, при этом поддерживалась скорость в 2.5 GTs на лэйн и агрегация до 16 лэйнов на порт (кстати, это наверное единственное, что так и не изменилось – несмотря на робкие упоминания и даже официальную поддержку в версии 2.0 ширины в x32, насколько мне известно никто порты такой ширины реально так и не поддерживает до сих пор). Обратите внимание, что скорость указана в GTs (транзакций в секунду) – это не биты данных, реальная битовая скорость ниже за счет кодирования 8b/10b (для версий до 2.1 включительно).

В течение следующих лет началось эволюционное развитие стандарта:

• 2005 год – релиз спецификации 1.1, содержащей незначительные улучшения без увеличения скорости

• 2007 год – стандарт версии 2.0, скорость на лэйн выросла в два раза (до 5GTs или 4Gbps)

• 2009 год – релиз версии 2.1, содержащей множество улучшений, по сути являющихся подготовкой к переходу к третьей версии

• 2010 – существенный скачок, переход к версии 3.0, который помимо увеличения канальной скорости до 8 GTs принес переход к новой кодировке (128b/130b), что позволило значительно сократить накладные расходы на передачу собственно данных. То есть если для версии 2.0 при скорости 5 GTs реальная битовая скорость составляла всего 4 Gbps, то для версии 3.0 при скорости 8 GTs битовая скорость составляет

7.87 Gbps – разница ощутимая.

• 2014 – релиз спецификации 3.1. В него включены различные улучшения обсуждавшиеся в рамках рабочих групп.

• 2017 – ожидается релиз финального варианта спецификации 4.0.

Последствия

Далее будет большое лирическое отступление. Как видно из графика выхода спецификаций, рост скорости шины фактически остановился аж на семь лет, в то время как производительность компонентов вычислительных систем и сетей интерконнекта и не думала стоять на месте. Здесь надо понимать, что PCI Express, хоть и является независимым стандартом, развиваемым рабочей группой с огромным количеством участников (PCI Special Interest Group – PCI-SIG, мы тоже являемся членами этой группы), направление его развития тем не менее во многом определяется мнением и позицией Intel, просто потому, что подавляющее большинство PCI Express устройств стоит именно в обычных домашних компьютерах, ноутбуках и low-end серверах – царстве процессоров с архитектурой x86. А Intel – корпорация большая, и у нее могут быть свои планы, в том числе и слегка идущие в разрез с желаниями других участников рынка. И многие из этих участников были, мягко говоря, недовольны задержкой увеличения скорости (особенно те, кто вовлечен в создание систем для High Performance Computing – HPC, или, попросту — суперкомпьютеров). Mellanox например давно уже уперся в развитии InfiniBand в бутылочное горлышко PCI Express, NVIDIA тоже явно страдала от несоответствия скорости PCI Express потребностям в передаче данных между GPU. Причем чисто технически скорость увеличить можно было бы уже давно, но многое упирается в необходимость сохранения обратной совместимости. К чему это все в итоге привело:

• NVIDIA создала свой собственный интерконнект (NVLINK, первая версия имеет скорость 20 GTs на лэйн, вторая будет иметь уже 25 GTs) и объявляет о готовности лицензировать его всем желающим (к сожалению только хостовую часть, лицензирование end-point’а пока не предполагается)

• IBM добавляет в процессоры POWER8 поддержку NVLINK 1.0 (уже доступна в процессорах POWER8+)

• В POWER9 (которые появятся на рынке в 2017 году) IBM будет поддерживать NVLINK 2.0, а также на тех же самых физических портах можно будет использовать протокол OpenCAPI – когерентный интерфейс для подключения ускорителей.

• В POWER9 IBM реализует PCI Express на скорости 16 GTs, что соответствует драфту спецификации 4.0 – то есть, похоже, Intel окажется не первым, кто поддержит новый стандарт.

Roadmap по процессорам POWER

Ремарки

Кстати, относительно указания скорости есть любопытный момент. Общепринятым вариантом указания скорости работы PCI Express устройства являются обозначения типа Gen1, Gen2, Gen3. По факту же к этому надо относиться именно как к указанию поддерживаемой скорости, а не соответствия стандарту соответствующей версии. То есть, например, устройству, полностью соответствующему стандарту 3.1 никто не запрещает не уметь работать на скорости выше 5 GTs.

Собственно, чем хорош PCI Express с точки зрения разработчика – тем, что это наиболее прямой и унифицированный (поддерживаемый самыми разными платформами) способ подключить что бы то ни было к центральному процессору с минимальными накладными расходами. Конечно, у процессоров Intel есть еще QPI – но это шина, доступ к которой дают очень (ОЧЕНЬ!) ограниченному кругу особо приближенных компаний. У IBM в POWER8 это X-Bus, A-Bus и, в будущем (для POWER9) – OpenCAPI, но о стоимости лицензирования первых двух вообще лучше не думать а третьей пока еще вообще нет (хотя она как раз должна быть открытой). Ну и конечно прямое подключение через PCI Express актуально только тогда, когда хочется много, быстро и с минимальной задержкой. Для всех остальных случаев есть USB, SAS/SATA, Eth и иже с ними.

Читайте также:  Развитие рынка газового оборудования

Ближе к кабелям

Несмотря на то, что PCI Express изначально задумывался именно для подключения компонентов внутри компьютера, желание подключить что-нибудь кабелем возникло достаточно быстро. В быту этого как правило не требуется (ну разве что для ноутбуков иногда хотелось бы внешнюю видеокарту подключить или что-нибудь типа того), но для серверов, особенно с появлением PCI Express коммутаторов, это стало очень актуальным – необходимое количество слотов иногда не так уж просто разместить внутри одного шасси. Да и с развитием GPU и сетей вычислительного интерконнекта, особенно с появлением технологии GPU Direct, желание иметь много устройств подключенных по PCI Express к одному хосту только возрастало.

Первые варианты кабельного подключения PCI Express были стандартизированы еще в 2007 году (спецификация 1.0), вторая ревизия вышла в 2012 году, сохранив неизменным тип разъемов и кабеля. Нельзя сказать, что такое подключение получило очень широкое распространение (все же ниша достаточно узкая), но тем не менее несколько крупных вендоров выпускали как разъемы, так и кабели, в том числе активную оптику. Одной из наиболее известных компаний, предлагающих различные варианты шасси расширения с подключением шины PCI Express кабелем, является One Stop Systems.

Кабель для внешних подключений PCI Express

Однако кабель (и разъем), выбранные изначально, сегодня уже не очень удобны. Первая (и довольно существенная) неприятность заключается в том, что невозможно разместить количество разъемов, необходимое для вывода порта шириной x16, на одной низкопрофильной карте (точнее, можно использовать специальный коннектор для x16, но при этом теряется универсальность в плане использований портов меньшей ширины, да и сам этот тип коннектора как-то не прижился). Второе неудобство происходит из того, что такой тип кабелей особо больше нигде не используется.

Между тем в индустрии существует стандарт с долгой историей использования кабелей, а именно – SAS. И текущая версия SAS 3.0 работает на скорости 12GTs, что в полтора раза превосходит скорость PCI Express Gen3, то есть SAS-кабели неплохо подходят и для подключения по ним PCI Express. Кроме того, Mini-SAS HD коннекторы еще очень удобны тем, что по одному кабелю идет сразу 4 лэйна, и существуют сборки на 2 и 4 коннектора, что позволяет использовать порты шириной x8 и x16. Размеры коннекторов при этом достаточно компактны, чтобы сборка на 4 коннектора уместилась на низкопрофильной карте. Дополнительным плюсом этих кабелей является то, что и в самом коннекторе, и в кабельной сборке сигналы Tx и Rx разнесены – это позволяет снизить их взаимное влияние. Соответственно сейчас все больше решений, где надо вывести PCI Express кабелем за пределы шасси, используют именно Mini-SAS HD.

Кабель и разъемы Mini-SAS HD

Как следствие описанного выше, а также того, что в скором будущем выйдет SAS 4.0 который будет иметь скорость 24GTs и сохранит при этом кабели того же форм-фактора (Mini-SAS HD), участники PCI-SIG решили стандартизировать использование именно этого типа кабелей для внешнего подключения PCI Express (включая ревизию 4.0 в будущем).

Что надо учитывать при передаче PCI Express по кабелю

Теперь немного о нюансах использования кабелей (любых) и проблемах, которые приходится решать. Интересующие нас кабели бывают двух типов – пассивные медные и активные оптические. С медными проблем меньше, но для них все равно нужно учитывать следующие моменты:

• при использовании пассивных кабелей из соображений обеспечения целостности сигнала необходимо на плате адаптера ставить или редрайверы, или коммутатор PCI Express; коммутатор необходим в случае, если хочется иметь возможность бифуркации порта x16, приходящего с хоста, на большее число портов (например 2×8 или 4×4), а также если удаленная сторона не поддерживает работу с раздельным 100MHz Reference Clock или необходимо обеспечить наличие непрозрачного моста (NT Bridge) между двумя хостами;

• в случае если необходим агрегированный линк (x8, x16) стоит обратить особое внимание на допустимый разброс длины кабелей конкретного производителя (он бывает особенно велик для длинных кабелей, и тогда можно получить значительный перекос длины между лэйнами одного порта, который превысит заложенные в стандарте допуски);

• нужно учитывать, что в кабеле Mini-SAS HD проходят только четыре дифф. пары и линии земли, то есть весь набор sideband сигналов, необходимых для полноценной работы PCI Express, там не протянуть; это может быть не критично, если кабель используется для связи двух коммутаторов, а вот в случае когда нужно просто удаленно подключить endpoint возможно придется использовать дополнительные кабели для проброса сигналов сброса и управления Hot Plug’ом;

• наверное излишне упоминать, что обе стороны должны быть заземлены, иначе возможно возникновение паразитного тока через линии земли кабеля, что совсем нежелательно.

Применение активных оптических кабелей позволяет не задумываться о части вопросов, которые приходится решать при использовании пассивной меди (редрайверы можно не ставить, поскольку конечной точкой прохождения электрического сигнала является сам трансивер, заземление тоже перестает волновать, так как две стороны кабеля являются гальванически изолированными), но при этом оптика не только не решает остальные проблемы присущие пассивным кабелям, но и привносит новые, присущие только ей:

• помимо ограничения на одинаковую длину кабелей появляется еще и ограничение на их идентичность – крайне нежелательно в пределах одного порта использовать кабели разных производителей, поскольку они могут иметь разную задержку на трансиверах;

• оптические трансиверы не поддерживают передачу состояния «Electrical Idle»;

• сюрприз – активные трансиверы сильно греются, и их нужно охлаждать;
также могут быть определенные нюансы, связанные с импедансом трансиверов, уровнями их сигналов и терминированием.

Альтернативы Mini-SAS HD

Конечно же Mini-SAS HD — не единственный тип кабелей и разъемов, которые можно использовать для подключения PCI Express. Можно вспомнить к примеру про классические QSFP или CXP, которые вполне подходят для этих целей, или подумать о более экзотических вариантах вроде установки оптического трансивера прямо на плату и выходе с карты сразу оптикой (у того же Avago Broadcom есть много подходящих вариантов, ну или вот например Samtec FireFly) — но все эти варианты оказываются существенно дороже или не очень удобны исходя из габаритов разъемов.

Кроме упомянутой выше инициативы по стандартизации Mini-SAS HD в качестве кабеля для внешних подключений PCI-SIG также занимается разработкой нового стандарта кабелей, который хоть и носит название OCuLink (Optical & Cuprum Link), скорее все же будет подразумевать только пассивные медные кабели, как для внутренних (в пределах шасси), так и для внешних подключений. Разъемы и кабели этого стандарта достаточно компактны, на рынке уже существуют серийные продукты, соответствующие этому, еще не выпущенному стандарту (у Molex это называется NanoPitch, Amphenol также предлагает кабели такого форм-фактора, в том числе и активные). К сожалению, эти разъемы также не подразумевают размещение четырех коннекторов на низкопрофильной карте. В сочетании с тем, что ни один вендор из тех, с кем мы общаемся, пока не планирует делать активную оптику с такими коннекторами, это вряд ли будет способствовать использованию этого типа кабелей для внешних подключений. А вот как вариант для внутренних кабелей это достаточно интересно, более того, мы уже видели проекты с их использованием и сами собираемся применять этот тип кабелей в нашем сервере для подключения дискового контроллера к материнской плате.

Внутренний кабель стандарта OCuLink

Что делаем мы

Теперь немножко про наши продукты. У нас есть проект, про него мы наверное тоже чуть позже будем подробнее рассказывать, который предполагает создание шасси с развитой коммутационной топологией PCI Express и подключение его к нескольким хостам. Понятно, что в этом случае не обойтись без вывода PCI Express через кабели, и для этого мы сделали плату адаптера на базе PCI Express коммутатора PLX (который был куплен Avago, который еще и переименовался в Broadcom после того, как и его тоже купил – в общем эти поглощения уже надоели, поэтому будем называть его по-прежнему PLX). Для нашего решения мы использовали кабели Mini-SAS HD – все же это нам кажется оптимальным вариантом, и судя по направлению работы PCI-SIG – мы не одиноки в этом убеждении.

Адаптер собственной разработки для вывода PCI Express через кабель

После получения и тестирования первых образцов мы с некоторым удивлением обнаружили, что при использовании качественных пассивных кабелей можно обеспечить работоспособность шины на скорости 8GTs (Gen3) через кабель длиной до 10 метров (длиннее пассивных кабелей мы просто не видели). А если требуется больше – то мы можем работать и с активными оптическими кабелями (проверили – работает).

На самом деле ставить достаточно дорогой чип коммутатора PCI Express в нашем проекте есть смысл только на одной стороне – стороне хоста, чтобы обеспечить возможность бифуркации порта x16 на четыре порта по x4. На другом конце кабеля достаточно поставить адаптер с редрайверами, поскольку в нашем варианте на этой стороне все будет и так подключаться к PCI Express коммутатору, который можно запрограммировать на требуемое разбиение порта.

И немножко о совместимости

При использовании Mini-SAS HD для передачи PCI Express стоит обратить внимание еще на один нюанс. Нумерация пар в коннекторе, предполагаемая SAS, не очень удобна для брейкаута в случае PCI Express. До тех пор, пока вы не предполагаете работать со сторонним оборудованием это не критично – можете подключать как вздумается вообще. Но если есть желание обеспечить совместимость с другими продуктами в будущем, то лучше придерживаться рекомендации PCI-SIG и изменить порядок подключения лэйнов.

Источник