Меню

Оборудование для определения надежности



Что такое надежность? Показатели надежности: определение и характеристика

Свойство объекта выполнять определенные приданные ему функции, сохраняя при этом эксплуатационные характеристики в определенных пределах, соответствующих заданным режимам и условиям применения, – это надежность. Показатели надежности могут быть самыми разными, но именно от них во многом зависит качество выполнения того или иного изделия.

Составляющие

Есть три основных составляющих данного определения:

  • выполнение установленных функций;
  • время, необходимое для этого;
  • определенные условия эксплуатации.

Если говорить о выполнении заданных функций, то здесь стоит отметить два понятия, которые относятся к теоретическому и практическому пониманию того, что представляет собой надежность. Показатели надежности с этой точки зрения следующие: исправность и работоспособность указанного изделия.

Работоспособность и исправность

Работоспособность представляет собой определенное состояние объекта, при котором у него сохраняется возможность выполнять указанные функции с параметрами, определяемыми технической документацией. При этом стоит отметить тот факт, что работоспособность и исправность неправильно отождествлять, поскольку вторая представляет собой такое состояние, при котором он полностью соответствует установленным требованиям в технической документации.

Время – это еще один немаловажный элемент, который подразумевает надежность. Показатели надежности в данном случае включают в себя это понятие далеко не случайно, так как физическая сущность надежности заключается в том, что любое изделие должно в обязательном порядке в течение определенного времени сохранять свои технические параметры.

Другие составляющие

Помимо этого, определение надежности включает в себя также условия эксплуатации. Для технических систем, которые функционируют в разных условиях, может быть характерным разное время до появления первых случаев отказа.

Нужно правильно понимать, какой широкий смысл несет в себе термин «надежность». Показатели надежности включают в себя большой диапазон качества без какого-то конкретного определения их количественной оценки и определенных свойств. Однако в процессе установления надежности определенного объекта или же общей технической системы появляется потребность в раскрытии тех понятий и свойств, которые входят именно в комплексный показатель. К примеру, для специализированного оборудования различных электростанций в числе подобных понятий следующие:

  • долговечность;
  • ремонтопригодность;
  • безотказность.

И сами они также зависят еще от целого ряда других параметров.

Вторичные показатели

Если говорить о том, от чего зависят основные параметры надежности, можно выделить три основных фактора. Это:

  • Качество. Показатели качества (надежности) включают в себя совокупность свойств, по которым определяется степень пригодности того или иного технического устройства для использования его по прямому назначению.

Качество непосредственно зависит от того, каким способом применяется то или иное изделие. К примеру, если специализированный паротурбинный блок, который был спроектирован изначально для несения базовых нагрузок, будет использоваться в особом маневренном режиме, то подобная эксплуатация в конечном итоге начнет крайне негативно сказываться на его состоянии и, соответственно, на его качестве, а также появятся низкие результаты, когда производится расчет показателей надежности.

  • Живучесть. Представляет собой способность определенного технического устройства препятствовать каким-либо серьезным нарушениям, а также исключать процесс развития всевозможных аварий и физической неисправности оборудования.
  • Безопасность. Определенное свойство технических устройств, которое предусматривает отсутствие возможности появления каких-либо ситуаций, являющихся опасными для людей и окружающей их среды. Таким образом, в процессе того как проводится расчет показателей надежности, учитываются и эти особенности.

В ходе рассмотрения вопросов надежности работы различных сложных систем рассматривается также такое понятие, как устойчивость в связи с отказом работы отдельных элементов. В отдельных же случаях также может применяться понятие «сохранность».

Что это?

Сохранность представляет собой свойство любого оборудования пребывать в исправном состоянии во время его хранения. Как и другие показатели надежности систем, она предусматривает возможность изделия поддерживать свои основные технические характеристики в установленных пределах. Если подразумевать, что хранение представляет собой неотъемлемую часть эксплуатации, то сохранность — это надежность в условиях хранения.

Можно сказать, что данный параметр является достаточно сложным, и его довольно трудно будет оценить какой-то определенной характеристикой, так как критериями сохранности могут выступать любые показатели надежности изделий.

Главной особенностью данного понятия является то, что здесь преобладают постоянные отказы из-за снижения установленных характеристик комплектующих, что происходит по причине их старения. Сохранность представляет собой достаточно важное техническое понятие, и в комплексе с надежностью позволяет определить надежность того или иного оборудования в разных состояниях. Это является тем более важным по той причине, что у большого количества оборудования присутствуют какие-то определенные сроки хранения, которые равны или даже превышают установленный рабочий срок. Определение показателей надежности работы технических систем включает в себя еще очень большое количество других факторов, которые различаются по своей природе.

Пример

В качестве примера можно рассмотреть надежность работы паротурбинного энергоблока, которая включает в себя:

  • качество материалов, использующихся в процессе производства;
  • совершенство разработанной конструкции;
  • используемую технологию изготовления;
  • применяемую технологию перевозки и монтажа оборудования;
  • качество применяемого топлива;
  • условия эксплуатации и обслуживания устройств.

И это только краткий список того, что включает в себя характеристика показателей надежности. Создание и применение новых, непрерывно усложняющихся установок предусматривает необходимость в постоянном обеспечении их все более и более высокой степени надежности. Именно поэтому была разработана специализированная «теория надежности», которая в последнее время стала пользоваться довольно широким распространением.

Теория

Сегодня предусмотрен математический аппарат теории надежности, который довольно часто используется в практике решения огромнейшего количества самых разнообразных задач, которые появляются в процессе производства и эксплуатации различного оборудования. Таким образом, основные понятия, которыми определяются показатели надежности (долговечности) оборудования, включают в себя:

  • систему;
  • объект;
  • элемент.

Формулировка данных понятий полностью соответствует основному философскому представлению о целом и элементе. Различные технические объекты, которые рассматриваются в данной теории надежности, представляются в виде всевозможных систем, являющихся совокупностью функционально взаимосвязанных и взаимодействующих между собой элементов. Данная система предназначается для того, чтобы выполнять заданную целостность программы. В качестве элементов рассматриваются отдельные части системы, которые могут осуществлять самостоятельное выполнение определенных задач.

Выбор системы, а также различных образующих ее частей является весьма произвольным. Если используется расширенная постановка задачи, то любая система в конечном итоге становится частью более крупной системы, а любые элементы разбиваются на части, в свою очередь, превращающиеся в его элементы. Таким образом, деление различного оборудования на элементы и системы непосредственно зависит от того иерархического уровня, на котором решаются поставленные задачи.

ГОСТом понятие системы и элемента объединяется в один термин – «объект».

Что он собой представляет?

Объектом принято называть определенное устройство системы или отдельного ее элемента, которое принимается с целью изучения каких-то конкретных его свойств вне всевозможных связей с другими частями.

В процессе эксплуатации как всей системы в целом, так и отдельного ее элемента могут появляться такие случаи, при которых возникает полная или же частичная утрата их функциональных свойств. Подобную потерю работоспособности в теории надежности принято называть отказом, и он представляет собой одно из основных понятий.

Отказ и его особенности

Отказ представляет собой любое событие, которое предусматривает нарушение или же полное прекращение работоспособности рассматриваемого объекта. При этом он бывает:

  • внезапным или постепенным;
  • зависимым или независимым;
  • частичным или окончательным.

Если отказ какого-то определенного элемента не предусматривает отказ остальных частей, его принято называть независимым, в то время как выход из строя прибора по причине поломки других элементов именуется зависимым.

Читайте также:  Газовое оборудование для дэу матиз

Внезапные отказы, исходя из названия, возникают абсолютно неожиданно без каких-либо заметных признаков их появления, в то время как постепенные предусматривают износ или старение материала, слишком длительное воздействие чрезмерных нагрузок, что приводит к постепенному снижению характеристик при полном или частичном сохранении работоспособности используемого оборудования.

Окончательные или полные отказы – это такая форма выхода из строя оборудования, при которой система теряет свою работоспособность или же параметры преодолевают допустимые пределы до того момента, пока причина отказа не будет устранена. Частичные же приводят только к активации предупредительной сигнализации, а также к необходимости снижения рабочих параметров до определенного уровня.

Помимо всего прочего, стоит отметить тот факт, что особое место уделяется отказам или их совокупностям, которые являются причиной перехода объекта в предельное состояние, при достижении которого его последующее применение по прямому назначению является нецелесообразным или недопустимым.

Как обеспечивается надежность оборудования в процессе производства?

Чтобы обеспечивались высокие показатели надежности и долговечности различных изделий, нужно правильно соблюдать технологии изготовления и монтажа любой системы. Анализ статистической информации свидетельствует о том, что в преимущественном большинстве случаев аварийные остановки специализированного оборудования являются причиной соответствующих технологических дефектов, поэтому современные производители стараются использовать целый ряд специализированных мероприятий, которые позволяют еще на стадии изготовления и установки минимизировать риски возникновения неполадок в различных системах.

Вне зависимости от того, какие основные показатели надежности старается обеспечить производитель, им должна проводиться работа в следующих направлениях:

  • Увеличение степени заводской готовности посредством выпуска оборудования в надежном исполнении. К примеру, трубопроводы, турбины, котлы и специализированное оборудование для водоподготовки может поставляться укрупненными блоками, при этом преимущественное большинство сборочно-сварочных работ переносится с первоначальной монтажной площадки в заводской цех, так как в подобных условиях гораздо проще добиться предельно высокого качества работы.
  • Широкое использование самых современных технологий обеспечения контроля качества на каждой отдельной стадии производства, начиная от входного контроля различных полуфабрикатов и исходных материалов до обеспечения контроля финишных процедур, натурных или же стендовых тестирований. Целесообразность проведения входного контроля была неоднократно подтверждена статистикой дефектов, которые были обнаружены в ходе проведения специализированного контроля различных изделий.
  • Использование прогрессивных технологических производственных устройств с программным управлением, которые позволяют максимально детально обрабатывать комплектующие и изготавливать изделие с максимальной точностью.
  • Механизация и автоматизация сложных процедур, расширение использования прогрессивных технологий.

Практикой уже неоднократно было доказано, что использование современного оборудования в процессе производства, а также полноценное соблюдение установленных режимов работы позволяет в значительной мере определить надежность конечного изделия. При этом нужно правильно понимать особенности производства того или иного оборудования или каких-либо изделий, а также основные факторы риска, чтобы использовать все необходимые меры для их устранения или минимизации. Благодаря этому оценка показателей надежности всегда будет высокой вне зависимости от того, в какой именно сфере ведется работа.

Источник

1.6. Надёжность оборудования

Механическое оборудование: техническое обслуживание и ремонт / В.И. Бобровицкий, В.А. Сидоров. – Донецк: Юго-Восток, 2011. – 238 с.

Надёжность – свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремонтов, хранения и транспортирования. В теории надёжности различают:

  • техническую надёжность, оценка которой проводится по результатам испытаний в заводских или стендовых условиях;
  • эксплуатационную надёжность, определяемую в реальных условиях использования изделия.

Понятие надёжности включает в себя:

  • безотказность;
  • долговечность;
  • ремонтопригодность;
  • сохраняемость.

Терминология теории надёжности регламентируется ГОСТ 27003-90 [7].

Безотказность – свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или некоторой наработки. Определяющей особенностью безотказности является непрерывное сохранение работоспособности в течение заданного времени.

Отказ – событие, заключающееся в нарушении работоспособного состояния объекта. Классификация отказов приведена на рисунке 1.8.

Классификация отказов

Рисунок 1.8 – Классификация отказов

Классификация отказов

В соответствии с ГОСТ 27.002-83 отказы подразделяются на восемь видов:

  1. Внезапный отказ характеризуется скачкообразным изменением одного или нескольких параметров объекта.
  2. Постепенный отказ характеризуется постепенным изменением значений одного или нескольких параметров объекта, то есть закономерным изменением параметра за время, предшествующее отказу (износовые отказы).
  3. Независимый отказ объекта не обусловлен отказом другого объекта.
  4. Зависимый отказ обусловлен отказом другого объекта.
  5. Перемежающийся отказ – многократно возникающий самоустраняющийся отказ объекта одного и того же характера.
  6. Конструкционный отказ возникает в результате несовершенства или нарушения правил и норм конструирования.
  7. Производственный отказ возникает в результате несовершенства или нарушения установленного процесса изготовления объекта, выполняющегося на машиностроительном предприятии.
  8. Эксплуатационный отказ возникает в результате нарушения установленных правил или условий эксплуатации объекта.

ГОСТ 24.010.05-78 дополнительно регламентирует наличие внешних проявлений:

  • очевидный (явный) отказ;
  • скрытый (неявный) отказ.

Степень возможности последующего использования изделия:

  • сбой;
  • частичный отказ;
  • систематический отказ;
  • полный отказ.

Время возникновения отказа:

  • при испытаниях;
  • в период приработки;
  • в период нормальной эксплуатации;
  • в последний период эксплуатации.

Работоспособное состояние определяется выполнением всех заданных функций процесса в границах заданных параметров.

Неработоспособное состояние наступает при невыполнении одной из заданных функций или при выходе параметров процесса за заданные границы.

Исправное состояние характеризуется соответствием объекта всем требованиям, установленным нормативно-технической документацией.

Если объект не соответствует хотя бы одному из требований нормативно-технической документации – состояние характеризуется как неисправное.

Дополнительно, для электро-механических систем, определяют понятие правильности функционирования – способность объекта выполнять в текущий момент времени предписанные алгоритмы функционирования со значениями параметров, соответствующими установленным требованиям.

  • повреждения – нарушения исправного состояния в процессе эксплуатации при сохранении работоспособного состояния;
  • нарушение функционирования – нарушение алгоритма изготовления или эксплуатации;
  • дефект – нарушение качества изготовления или монтажа элементов объекта.

Если объект переходит в неисправное, но работоспособное состояние, то это событие называют повреждением; если объект переходит в неработоспособное состояние – отказом.

Предельное состояние – состояние объекта, при котором его дальнейшее применение по назначению или восстановление недопустимо или нецелесообразно, либо восстановление исправного или работоспособного состояния невозможно или нецелесообразно.

Все объекты подразделяются на ремонтируемые и неремонтируемые:

  • ремонтируемый объект – объект, ремонт которого возможен и предусмотрен нормативно-технической и конструкторской документацией;
  • неремонтируемый объект – объект, ремонт которого невозможен и не предусмотрен.

Ремонтируемые объекты можно разделить на восстанавливаемые и невосстанавливаемые:

  • восстанавливаемый объект – объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния предусмотрено в нормативно-технической документации;
  • невосстанавливаемый объект – объект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния не предусмотрено.

Безотказность исчисляется временем или наработкой. Наработка – продолжительность или объём работы объекта. Выражается во времени функционирования или в единицах объёма выполненной работы за промежуток времени (ч, сут., циклы нагружения, т).

Для количественной характеристики безотказности металлургических машин применяют следующие показатели:

Источник

Оборудование для определения надежности

НАДЕЖНОСТЬ В ТЕХНИКЕ

Dependability in technics.
Dependability prediction. Basic principles

МКС 21.020
ОКСТУ 0027

Дата введения 1997-01-01

1 РАЗРАБОТАН МТК 119 «Надежность в технике»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 7 от 26 апреля 1995 г.)

Читайте также:  Газовое оборудование для жигули

За принятие проголосовали:

Наименование национального органа по стандартизации

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

3 Стандарт разработан с учетом положений и требований международных стандартов МЭК 300-3-1 (1991), МЭК 863 (1986) и МЭК 706-2 (1990)

4 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 26 июня 1996 г. N 430 межгосударственный стандарт ГОСТ 27.301-95 введен в действие непосредственно в качестве государственного стандарта Российской Федерации 1 января 1997 г.

5 ВЗАМЕН ГОСТ 27.410-87 (в части п.2)

1 Область применения

Настоящий стандарт устанавливает общие правила расчета надежности технических объектов, требования к методикам и порядок представления результатов расчета надежности.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 2.102-68 Единая система конструкторской документации. Виды и комплектность конструкторских документов

ГОСТ 27.002-89 Надежность в технике. Основные понятия. Термины и определения

ГОСТ 27.003-90 Надежность в технике. Состав и общие правила задания требований по надежности

ГОСТ 27.310-95 Надежность в технике. Анализ видов, последствий и критичности отказов. Основные положения

3 Определения

В настоящем стандарте применены общие термины в области надежности, определения которых установлены ГОСТ 27.002. Дополнительно в стандарте применены следующие термины, относящиеся к расчету надежности.

3.1. расчет надежности: Процедура определения значений показателей надежности объекта с использованием методов, основанных на их вычислении по справочным данным о надежности элементов объекта, по данным о надежности объектов-аналогов, данным о свойствах материалов и другой информации, имеющейся к моменту расчета.

3.2 прогнозирование надежности: Частный случай расчета надежности объекта на основе статистических моделей, отражающих тенденции изменения надежности объектов-аналогов и/или экспертных оценок.

3.3 элемент: Составная часть объекта, рассматриваемая при расчете надежности как единое целое, не подлежащее дальнейшему разукрупнению.

4 Основные положения

4.1 Порядок расчета надежности

Надежность объекта рассчитывают на стадиях жизненного цикла и соответствующих этим стадиям этапах видов работ, установленных программой обеспечения надежности (ПОН) объекта или документами, ее заменяющими.

ПОН должна устанавливать цели расчета на каждом этапе видов работ, применяемые при расчете нормативные документы и методики, сроки выполнения расчета и исполнителей, порядок оформления, представления и контроля результатов расчета.

4.2 Цели расчета надежности

Расчет надежности объекта на определенном этапе видов работ, соответствующем некоторой стадии его жизненного цикла, может иметь своими целями:

обоснование количественных требований по надежности к объекту или его составным частям;

проверку выполнимости установленных требований и/или оценка вероятности достижения требуемого уровня надежности объекта в установленные сроки и при выделенных ресурсах, обоснование необходимых корректировок установленных требований;

сравнительный анализ надежности вариантов схемно-конструктивного построения объекта и обоснование выбора рационального варианта;

определение достигнутого (ожидаемого) уровня надежности объекта и/или его составных частей, в том числе расчетное определение показателей надежности или параметров распределения характеристик надежности составных частей объекта в качестве исходных данных для расчета надежности объекта в целом;

обоснование и проверку эффективности предлагаемых (реализованных) мер по доработкам конструкции, технологии изготовления, системы технического обслуживания и ремонта объекта, направленных на повышение его надежности;

решение различных оптимизационных задач, в которых показатели надежности выступают в роли целевых функций, управляемых параметров или граничных условий, в том числе таких, как оптимизация структуры объекта, распределение требований по надежности между показателями отдельных составляющих надежности (например безотказности и ремонтопригодности), расчет комплектов ЗИП, оптимизация систем технического обслуживания и ремонта, обоснование гарантийных сроков и назначенных сроков службы (ресурса) объекта и др.;

проверку соответствия ожидаемого (достигнутого) уровня надежности объекта установленным требованиям (контроль надежности), если прямое экспериментальное подтверждение их уровня надежности невозможно технически или нецелесообразно экономически.

4.3 Общая схема расчета

4.3.1 Расчет надежности объектов в общем случае представляет собой процедуру последовательного поэтапного уточнения оценок показателей надежности по мере отработки конструкции и технологии изготовления объекта, алгоритмов его функционирования, правил эксплуатации, системы технического обслуживания и ремонта, критериев отказов и предельных состояний, накопления более полной и достоверной информации о всех факторах, определяющих надежность, и применения более адекватных и точных методов расчета и расчетных моделей.

4.3.2 Расчет надежности на любом этапе видов работ, предусмотренном планом ПОН, включает:

идентификацию объекта, подлежащего расчету;

определение целей и задач расчета на данном этапе, номенклатуры и требуемых значений рассчитываемых показателей надежности;

выбор метода(ов) расчета, адекватного(ых) особенностям объекта, целям расчета, наличию необходимой информации об объекте и исходных данных для расчета;

составление расчетных моделей для каждого показателя надежности;

получение и предварительную обработку исходных данных для расчета, вычисление значений показателей надежности объекта и, при необходимости, их сопоставление с требуемыми;

оформление, представление и защиту результатов расчета.

4.4 Идентификация объекта

4.4.1 Идентификация объекта для расчета его надежности включает получение и анализ следующей информации об объекте, условиях его эксплуатации и других факторах, определяющих его надежность:

назначение, области применения и функции объекта;

критерии качества функционирования, отказов и предельных состояний, возможные последствия отказов (достижения объектом предельного состояния) объекта;

структура объекта, состав, взаимодействие и уровни нагруженноcти входящих в него элементов, возможность перестройки структуры и/или алгоритмов функционирования объекта при отказах отдельных его элементов;

наличие, виды и способы резервирования, используемые в объекте;

типовая модель эксплуатации объекта, устанавливающая перечень возможных режимов эксплуатации и выполняемых при этом функций, правила и частоту чередования режимов, продолжительность пребывания объекта в каждом режиме и соответствующие наработки, номенклатуру и параметры нагрузок и внешних воздействий на объект в каждом режиме;

планируемая система технического обслуживания (ТО) и ремонта объекта, характеризуемая видами, периодичностью, организационными уровнями, способами выполнения, техническим оснащением и материально-техническим обеспечением работ по его ТО и ремонту;

распределение функций между операторами и средствами автоматического диагностирования (контроля) и управления объектом, виды и характеристики человеко-машинных интерфейсов, определяющих параметры работоспособности и надежности работы операторов;

уровень квалификации персонала;

качество программных средств, применяемых в объекте;

планируемые технология и организация производства при изготовлении объекта.

4.4.2 Полнота идентификации объекта на рассматриваемом этапе расчета его надежности определяет выбор соответствующего метода расчета, обеспечивающего приемлемую на данном этапе точность при отсутствии или невозможности получения части информации, предусмотренной 4.4.1.

4.4.3 Источниками информации для идентификации объекта служит конструкторская, технологическая, эксплуатационная и ремонтная документация на объект в целом, его составные части и комплектующие изделия в составе и комплектах, соответствующих данному этапу расчета надежности.

4.5 Методы расчета

4.5.1 Методы расчета надежности подразделяют:

по составу рассчитываемых показателей надежности (ПН);

по основным принципам расчета.

4.5.2 По составу рассчитываемых показателей различают методы расчета:

комплексных показателей надежности (методы расчета коэффициентов готовности, технического использования, сохранения эффективности и др.).

4.5.3 По основным принципам расчета свойств, составляющих надежность, или комплексных показателей надежности объектов различают:

структурные методы расчета,

физические методы расчета.

Методы прогнозирования основаны на использовании для оценки ожидаемого уровня надежности объекта данных о достигнутых значениях и выявленных тенденциях изменения ПН объектов, аналогичных или близких к рассматриваемому по назначению, принципам действия, схемно-конструктивному построению и технологии изготовления, элементной базе и применяемым материалам, условиям и режимам эксплуатации, принципам и методам управления надежностью (далее — объектов-аналогов).

Структурные методы расчета основаны на представлении объекта в виде логической (структурно-функциональной) схемы, описывающей зависимость состояний и переходов объекта от состояний и переходов его элементов с учетом их взаимодействия и выполняемых ими функций в объекте с последующими описаниями построенной структурной модели адекватной математической моделью и вычислением ПН объекта по известным характеристикам надежности его элементов.

Читайте также:  Как называется оборудование для мороженого

Физические методы расчета основаны на применении математических моделей, описывающих физические, химические и иные процессы, приводящие к отказам объектов (к достижению объектами предельного состояния), и вычислении ПН по известным параметрам нагруженности объекта, характеристикам примененных в объекте веществ и материалов с учетом особенностей его конструкции и технологии изготовления.

Источник

Онлайн калькулятор надёжности. Расчёт надёжности онлайн

Расчёт надёжности | areliability.com blog about reliability engineering

Расчёт надёжности

расчёт надёжности

Расчёт надёжности — процедура определения значений показателей надежности объекта с использованием методов, основанных на их вычислении по справочным данным о надежности элементов объекта, по данным о надежности объектов-аналогов, данным о свойствах материалов и другой информации, имеющейся к моменту расчета. В результате расчёта определяются количественные значения показателей надёжности.

Посмотрите выполненные мной расчёты надёжности.

расчет надежности цена

Я специалист по надёжности космической техники. В какой-то момент я задался вопросом, а есть ли какие-то онлайн сервисы, которые позволяют сделать расчёт надёжности онлайн. Оказалось что англоязычные сервисы есть, а русских нет вообще. Я решил это исправить и сделал свой онлайн калькулятор надёжности.

Надёжность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Надёжность — одно из важнейших качеств любого объекта.

Внимание! Если вы открыли сайт со смартфона — сделайте горизонтальную ориентацию экрана. Сайт работает и офлайн. Если у вас неожиданно пропал интернет — расчёт можно вести в случае загруженной страницы. Перезагрузка страницы не требуется. Кроме того, вы можете сохранить калькулятор к себе на компьютер. Для этого в вашем браузере выполните команду — Файл — Сохранить как (или сохранить страницу как) — Веб страница, HTML.

Видеорассказ о том, как пользоваться калькулятором

Калькулятор спроектирован на основании ГОСТ 27.301-95 и ГОСТ Р 51901.14-2007.

Если вы хотите мгновенно делать сложнейший расчет надежности и экономить десятки часов рабочего времени, используйте мой пример расчета надежности в Excel.

расчет надежности пример

Последовательное и параллельное соединение элементов

1. Расчёт надёжности системы при последовательном соединении элементов.

Пример построения структурной схемы надёжности для последовательного соединения элементов.

Пример последовательного соединения copy copy

Пример для ввода данных: ВБР 1 двигателя = 0.995. ВБР 2 коробки передач = 0.996.

ВБР вводите с точкой, а не с запятой. 0,992 — неправильный формат. 0.992 — правильный.

Данный калькулятор позволяет сделать расчёт надёжности системы, если ваша структурная схема надёжности состоит из семи последовательно соединённых элементов. Если у вас число элементов меньше семи, заполните ненужные ячейки единичками. Например, ваша структурная схема состоит из пяти элементов. Вводите ВБР пяти элементов, а для шестого и седьмого введите цифру 1.

ВБР — вероятность безотказной работы элемента, агрегата, системы. Вероятность безотказной работы — это вероятность того, что в пределах заданной наработки или заданном интервале времени отказ объекта не произойдёт.

последовательное соединение элементов

Расчёт надёжности системы для последовательного соединения элементов в случае, если известна интенсивность отказов элементов (failure rate) и время работы системы. Обратите внимание, интенсивность отказов, она же λ — лямбда как правило табличное значение, задаётся в размерности 10 в минус 6 степени. Например, интенсивность отказов манометра составляет 1.3 на 10 в минус 6 степени. Для расчёта берите значение именно 1.3, степень вводить не надо, калькулятор автоматически переведёт в нужную размерность. Внимание! Если у вас в системе число элементов меньше пяти, ненужные ячейки можете не заполнять. Например, ваша структурная схема состоит из трёх элементов. Вводите ВБР трёх элементов, а четвёртый и пятый пропустите.

Табличные интенсивности отказов для многих агрегатов вы можете найти в этом справочнике.

2. Расчёт надёжности системы при параллельном соединении элементов

параллельное соединение элементов

Пример для ввода данных: ВБР 1 двигателя = 0.995. ВБР 2 коробки передач = 0.996.

ВБР вводите с точкой, а не с запятой. 0,992 — неправильный формат. 0.992 — правильный.

Данный калькулятор позволяет сделать расчёт надёжности системы, если ваша структурная схема надёжности состоит из пяти параллельно соединённых элементов. Если у вас число элементов меньше пяти, ненужные ячейки можете не заполнять. Например, ваша структурная схема состоит из трёх элементов. Вводите ВБР трёх элементов, а четвёртый и пятый пропустите.

Расчёт надёжности системы для параллельного соединения элементов в случае, если известна интенсивность отказов резервируемых элементов (failure rate), количество этих элементов и время работы системы. Обратите внимание! В данном случае интенсивности отказов всех элементов системы одинаковые. Именно так и поступают на практике. Обратите внимание, интенсивность отказов, она же λ — лямбда как правило табличное значение, задаётся в размерности 10 в минус 6 степени. Например, интенсивность отказов манометра составляет 1.3 на 10 в минус 6 степени. Для расчёта берите значение именно 1.3, степень вводить не надо, калькулятор автоматически переведёт в нужную размерность.

Табличные интенсивности отказов для многих агрегатов вы можете найти в этом справочнике.

3. Расчёт надёжности одного элемента в случае, если известна интенсивность отказов элемента (failure rate). Обратите внимание, интенсивность отказов, она же λ — лямбда как правило табличное значение, задаётся в размерности 10 в минус 6 степени. Например, интенсивность отказов манометра составляет 1.3 на 10 в минус 6 степени. Для расчёта берите значение именно 1.3, степень вводить не надо, калькулятор автоматически переведёт в нужную размерность.

Табличные интенсивности отказов для многих агрегатов вы можете найти в этом справочнике.

От меня привет всем «надёжникам», борцам за надёжность в различных КБ и организациях. Пользуйтесь на здоровье, берегите своё время. Алексей Глазачев. Инженер по надежности.

Если вы хотите выполнить следующие расчеты надежности:

1. Рассчитать вероятность безотказной работы устройства в зависимости от его времени работы и интенсивности отказов;

2. Пересчитать наработку на отказ в вероятность безотказной работы и обратно;

3. Посчитать гамма-процентную наработку изделия на отказ;

4. Оценить надежность системы с последовательным соединением элементов;

5. Посчитать надежность системы с параллельным соединением элементов, «горячим», нагруженным резервированием;

6. Рассчитать надёжность системы с комбинированным (и последовательным и параллельным) соединением элементов;

7. Посчитать надёжность системы с холодным (ненагруженным резервом);

8. Оценить надёжность системы, в которой используется мажоритарное резервирование (например, должно сработать 2 из 3 компонентов);

9. Посчитать надёжность систем с резервирование k из n элементов. На мой взгляд это самый интересный расчёт, который задействует разные доли мозга. Потребуется использование комбинаторики (я объясню в файле как это делать). Например, посчитать надежность двигательной установки, состоящей из 6 двигателей, в которой возможно 2 отказа;

10. Рассчитать комплексные показатели надежности: коэффициент готовности, коэффициент оперативной готовности, вероятность своевременного завершения операции (этого нет в учебниках, но используется например в боевой авиации);

11. Оценить вероятность восстановления работоспособного состояния оборудования;

12. Посмотреть связь надежности и экономики — посчитать временя простоя оборудования и стоимость вынужденного простоя оборудования для компании.

То используйте мой пример расчета надежности в Excel.

Источник