Меню

Оборудование для ограничения перенапряжений

Ограничитель импульсных перенапряжений

ограничитель_перенапряжений_ОПН ограничитель перенапряжений шнайдер

Виды и принцип работы ограничителя перенапряжения

Известно, что наиболее опасной ситуацией являются повторяющиеся краткосрочные превышения номинального показателя напряжения (перенапряжение). Причины таких ситуаций — природные явления (грозы) и процессы коммутации в электроустановках. Ограничители перенапряжения ОПН являются отличным способом борьбы со скачками в напряжении. Их использованием нельзя пренебрегать, поскольку с их помощью можно избежать поломки и выхода из строя бытового и промышленного электрооборудования, а также минимизировать риск воспламенений.

Ограничители импульсного перенапряжения подразделяются на виды по типу изоляции, конструкции, а также на основе показателя рабочего напряжения и места монтажа. При этом все ограничители ОПН функционируют по единому принципу.

Применение ограничителя перенапряжения (ОПН)

Ограничители перенапряжения используются с целью обеспечения защиты электрического оборудования от периодически возникающих в напряжении высоких импульсов. Современные ОПН быстро вытеснили устаревшие вентильные крупногабаритные разрядники (предшественники ОПН). Работа новых моделей ограничителя перенапряжения не берет за основание искровые промежутки. Основным рабочим элементом ограничителя импульсного перенапряжения является нелинейный резистор. Основой материала изготовления резистора в ОПН служит окись цинка.

Конструктивные особенности ограничителя перенапряжения (ОПН)

Главный элемент любого ОПН – варистор. Он и служит нелинейным переменным резистором в ограничителе перенапряжения. Размещаются варисторы либо в фарфоровом, либо в высокопрочном полимерном корпусе.

Устройство ограничителя перенапряжения разработано таким образом, что обеспечивается полная безопасность, исключена возможность взрывов в ситуации КЗ и перенапряжений.

Стоит отметить, что ограничители импульсного перенапряжения, применяемые в защите ЛЭП и промышленного оборудования, имеют контактный болт (на крышке) для подсоединения к электросети. Вместе с ОПН выпускаются специальные изолированные плиты основания для ограничителя.

Ограничители перенапряжений для квартир и частных домов отличаются небольшими размерами и лаконичным дизайном. Их монтаж осуществляется на DIN-рейку. Такие устройства различаются между собой уровнем сложности, который служит основанием для наличия индикации и дистанционного управления.

Как работает ограничитель перенапряжения?

Вольтамперные характеристики (ВАХ) варисторов и их нелинейный характер – объяснение принципа работы ограничителей импульсных перенапряжений.

В производстве варисторов используется материал, состоящий из смеси окиси цинка с другими оксидами металлов. Варисторы собраны в единую колонку, что представляет собой комбинацию параллельных и последовательных включений (p-n переходы) и служит основой ВАХ.

Ограничитель импульсных перенапряжений при удержании уровня номинального напряжения находится в непроводящем состоянии. Показатель тока варисторов отличается очень маленькими значениями, почему и характеризуется емкостью.

В момент возникновения в электрической сети импульсов напряжения (нередко возникают пробои в изоляционном материале) в резисторах ограничителя перенапряжения возникают значительные импульсные токи. Последние напрямую зависят от вольтамперных характеристик. Именно благодаря данной схеме снижается показатель перенапряжений до безопасных значений. После нормализации напряжения в электросети, ограничитель перенапряжения снова входит в непроводящее состояние.

Виды ограничителей импульсных перенапряжений (Виды ОПН)

Современные модели ОПН разнообразны и различаются по таким признакам, как тип изоляции, конструкция, показатель рабочего напряжения, место монтажа.

Ограничители перенапряжения на DIN-рейке (способ установки) бывают одно- и трехфазными.

Также ограничители модульного тока делятся по типам B, C, D.

Ограничитель перенапряжения класса B монтируется на вводе в помещение, класса C — внутри распределительного щита, класса D – на отдельном оборудовании.

Важные характеристики ограничителей перенапряжения

Выбирая ОПН, необходимо обращать внимание на следующие свойства:

  • максимальный показатель действующего напряжения – наибольшая величина напряжения, которая позволяет ОПН остаться в рабочем состоянии без временных ограничений в момент перенапряжения;
  • номинальный показатель напряжения, которое устройство может выдерживать около 10 мин;
  • проводимость токов – показатель тока, который соответствует цепи варисторов в ситуации воздействия напряжения номинальных показателей;
  • номинальный показатель разрядного тока определяет классификацию ОПН во время гроз;
  • показатель тока (расчетный ток) в момент коммутационных перенапряжений;
  • пропускная способность токов (аналогична классу разряда электролинии);
  • степень устойчивости к КЗ с сохранением изоляции.

Предотвратить ситуацию возникновения коротких замыканий и обеспечить безопасность своего дома или квартиры – прямая обязанность хозяев. Сегодня это не составляет никакого труда, поскольку огромное разнообразие защитного оборудования в свободном доступе продается в специализированных магазинах. В торговой сети «Планета Электрика» Вы можете приобрести ограничители перенапряжений (ОПН) от таких известных производителей, как ABB, Legrand, Schneider Electric, SIEMENS, КЭАЗ и др.

Источник



Способы защиты от перенапряжений в электрических сетях

Способы защиты от перенапряжений в электрических сетях Перенапряжение – это ненормальный режим работы в электрических сетях, который заключается в чрезмерном увеличении значения напряжения выше допустимых значений для участка электрической сети, который является опасным для элементов оборудования данного участка электрической сети.

Изоляция оборудования электроустановок рассчитана на нормальную работу при определенных значениях напряжения, в случае наличия перенапряжения, изоляция приходит в негодность, что приводит к повреждению оборудования и представляет опасность для обслуживающего персонала или людей, которые находятся в непосредственной близости к элементам электрических сетей.

Перенапряжения могут быть двух видов – природными (внешними) и коммутационными (внутренними). Природные перенапряжения – это явление атмосферного электричества. Коммутационные перенапряжения возникают непосредственно в электрических сетях, причинами их проявления могут быть большие перепады нагрузки на линиях электропередач, феррорезонансные явления, послеаварийные режимы работы электрических сетей.

Способы защиты от перенапряжений

В электроустановках для защиты оборудования от возможных перенапряжений применяют такое защитное оборудование, как разрядники и ограничители перенапряжения нелинейные (ОПН) .

ОПН

Основным конструктивным элементом данного защитного оборудования является элемент с нелинейными характеристиками. Характерная особенность данных элементов заключается в том, что они изменяют свое сопротивление в зависимости от приложенного к ним значения напряжения. Рассмотрим вкратце принцип работы данных защитных элементов.

Разрядник или ограничитель перенапряжения присоединяется к шине рабочего напряжения и к контуру заземления электроустановки. В нормальном режиме, то есть, когда сетевое напряжение находится в пределах допустимых значений, разрядник (ОПН) имеет очень большое сопротивление, и он не проводит напряжение.

В случае возникновения перенапряжения на участке электрической сети сопротивление разрядника (ОПН) резко падает, и данный защитный элемент проводит напряжение, способствуя утечке возникшего скачка напряжения в заземляющий контур. То есть на момент перенапряжения разрядник (ОПН) осуществляет электрическое соединение провода с землей.

Разрядники и ОПН устанавливаются для защиты элементов оборудования на территории распределительных устройств электроустановок, а также в начале и в конце линий электропередач напряжением 6 и 10 кВ, которые не оборудованы грозозащитным тросом.

ограничительперенапряжения

Для защиты от природных (внешних) перенапряжений на металлических и железобетонных конструкциях открытых распределительных устройств устанавливают стержневые молниеотводы . На высоковольтных линиях напряжением 35 кВ и выше применяют грозозащитный трос (тросовый молниеотвод), который располагается в верхней части опор линий электропередач на всей их протяженности, соединяясь с металлическими элементами линейных порталов открытых распределительных устройств подстанций. Молниеотводы притягивают атмосферные заряды на себя, тем самым предупреждая их попадания на токоведущие части электрооборудования электроустановок.

Для обеспечения надежной защиты оборудования электроустановок от возможных перенапряжений, разрядники и ограничители перенапряжений, как и все элементы оборудования, должны проходить периодические ремонты и испытания. Также необходимо в соответствии с установленной периодичностью проверять сопротивление и техническое состояние заземляющих контуров распределительных устройств.

Защита от перенапряжений в высоковольтных электрических цепях

Перенапряжения в низковольтных сетях

Явление перенапряжений также характерно и для низковольтных сетей напряжением 220/380 В. Перенапряжения в низковольтных сетях приводят к выходу из строя не только оборудования данных электрических сетей, но и электроприборов, которые включены в сеть.

Для защиты от перенапряжений в домашней электропроводке используют реле напряжения или стабилизаторы напряжения, источники бесперебойного питания, в которых предусмотрена соответствующая функция. Также существуют модульные устройства защиты от импульсных перенапряжений, предназначенные для установки в домашний распределительный щиток.

УЗИП

В низковольтных распределительных устройствах предприятий, электроустановок, ЛЭП для защиты от перенапряжений применяют специальные ограничители перенапряжений по принципу работы схожие с высоковольтными ОПН.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Что такое ограничитель перенапряжения и как он работает?

Одним из наиболее опасных аварийных режимов в электрических сетях является импульсный скачек напряжения при атмосферных разрядах, перехлесте линий или коммутационных операциях. Эта величина значительно опережает нарастание импульсного тока и воздействует на изоляцию электрооборудования и других устройств, поэтому классические автоматы и другие защиты, реагирующие на изменение номинального тока, против нее не эффективны.

Читайте также:  Речевое развитие игровое оборудование

Значение перенапряжения может в разы превышать номинальную рабочую величину, поэтому такое явление подвергает опасности все оборудование и элементы сети. Для предотвращения значительных убытков и последующих затрат на восстановление в электроустановках используются ограничители перенапряжения (ОПН).

Устройство и принцип действия

Конструктивно ограничитель перенапряжения включает в себя полупроводниковый элемент с нелинейной величиной сопротивления. Как правило, в роли таких элементов выступают вилитовые диски, изготовленные на основе оксидов цинка с включением в из состав тех или иных примесей. Снаружи диски закрываются защитной рубашкой, а на концах имеют электрические выводы, один из которых подводится к защищаемой электрической сети, а второй заземляется. Пример частного варианта устройства ограничителя перенапряжения представлен на рисунке 1 ниже:

Устройство ограничителя перенапряжения

Рисунок 1: устройство ограничителя перенапряжения

Работа ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.

В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.

Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.

Вольтамперная характеристика ОПН

Рис. 2: вольтамперная характеристика ОПН

Как видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшиться и протекающий ток увеличиться до сотен и тысяч ампер.

Здесь кривая характеристики представлена тремя участками:

  • 1 – область нулевых или сверхмалых токов;
  • 2 – область средних токовых нагрузок;
  • 3 – область максимального тока.

Применение

Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.

Пример использования ОПН

Рис. 3: пример использования ОПН

Широкое применение нелинейных ограничителей распространено в линиях электропередач, где они выступают в роли молниезащиты, а сами провода являются молниеприемниками. В промышленных целях ограничители перенапряжения используются для защиты различных электрических аппаратов и персонала, к примеру, на тяговых и трансформаторных подстанциях, распределительных устройствах и т.д. В бытовых устройствах ОПН применяются для установки в электрических щитках на вводе в здание или для защиты какого-либо ценного оборудования.

Виды ОПН

В связи с большим спектром решаемых задач ограничители перенапряжения подразделяются на несколько видов, которые отличаются по таким параметрам:

  • Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
  • Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
  • Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
  • Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.

Так для каждой из фаз в электроустановке может устанавливаться отдельная колонка или одна для всех. Также следует отметить, что в электроустановках на 110 кВ и более ОПН для одной фазы может собираться из нескольких однотипных элементов, к примеру, из трех на 35 кВ.

В зависимости от причин возникновения перенапряжения в сети устройство защиты должно выстраиваться в соответствии с требованиями стандартов:

  • ГОСТ Р 50571.18-2000 – от возможных перенапряжений в низковольтных сетях при замыканиях по высокой стороне.
  • ГОСТ Р 50571.19-2000 – от скачков, образованных воздействием молнии и возникающих в результате переключения электроустановок.
  • ГОСТ Р 50571.20-2000 – от перенапряжений генерируемых электромагнитными воздействиями.

Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.

Фарфоровые

Достаточно распространенным вариантом являются ограничители коммутационных перенапряжений с фарфоровым корпусом. Такие модели отличаются своими эксплуатационными параметрами, так как керамика невосприимчива к воздействию солнечной радиации, а находящийся внутри вентильный разрядник практически не зависит от температуры внешней среды.

Также весомым преимуществом этих ограничителей является большая механическая прочность на сжатие и разрыв, благодаря чему их можно использовать и в качестве опорной конструкции. Но фарфоровые ОПН характеризуются сравнительно большим весом, а также представляют значительную угрозу в случае разрыва, так как осколки фарфора поражают близлежащие здания и могут травмировать персонал.

Полимерные

С развитием химической отрасли и распространением полимеров в качестве диэлектриков они значительно вытеснили фарфоровые ограничители. Полимерные ОПН представляют собой устройства с рубашкой из каучука, винила, фторопласта или других подобных материалов.

Полимерные ограничители куда боле устойчивы к воздействию влаги, отличаются меньшим весом и большей взрывобезопасностью, так как в случае разрушения корпуса избыточным давлением внутри колонки, рубашка повреждается по линии разлома, но не разлетается острыми осколками. Значительным преимуществом полимерных моделей является их устойчивость к динамическим нагрузкам.

К недостаткам полимерных ОПН относится способность к накоплению пыли и прочих засорителей на поверхности диэлектрика, которые со временем приводят к повышению пропускной способности, увеличению тока утечки и пробою изоляции. Также полимеры боятся солнечной радиации и температурных колебаний в окружающей среде.

Одноколонковые

Такие ограничители перенапряжения представляют собой один конструктивный элемент с нелинейным сопротивлением. Число полупроводниковых дисков в них набирается в соответствии с категорией защищаемой электроустановки. В зависимости от количества и типа осаживающейся на поверхности пыли и засорителей, одноколонковые ОПН подразделяются по классам от II до IV согласно градуировке ГОСТ 9920.

Многоколонковые

В отличии от предыдущих устройств борьбы с коммутационными перенапряжениями, эти средства защиты высоковольтного оборудования имеют несколько колонок, модулей или блоков, объединяемых в одну систему. Данный вид ОПН характеризуется большей надежностью по отношению к защищаемым объектам, так как способен реагировать и на одиночные, и на дифференциальные перенапряжения.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Обслуживание и диагностика ОПН

В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя. Для предотвращения подобных ситуаций они подвергаются периодической проверке в процессе эксплуатации, которая регламентируется п.2.8.7 ПТЭЭП. При этом проверяется:

  • Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
  • Ток проводимости – проверяется только при условии снижения предыдущего параметра.
  • Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
  • Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.
Читайте также:  Лабораторное оборудование для санитарного

Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.

Источник

Защита оборудования от импульсных перенапряжений и коммутационных помех

На написание данного текста меня сподвигло ощущение незнания многими принципов работы, использования (или даже незнание о существовании) параллельной защиты от импульсных перенапряжений в сети, в том числе и вызванных разрядами молний
Импульсные помехи в сети довольно распространены, они могут возникать во время грозы, при включении/выключении мощных нагрузок (поскольку сеть это RLC цепь, то в ней при этом возникают колебания, вызывающие выбросы напряжения) и многие другие факторы. В слаботочных, в том числе цифровых цепях, это еще более актуально, поскольку коммутационные помехи достаточно хорошо проникают через источники питания (больше всего защищенными являются Обратноходовые преобразователи — в них энергия трансформатора передается на нагрузку, когда первичная обмотка отключена от сети).
В Европе уже давно де-факто практически обязательна установка модулей защиты от импульсных перенапряжений (далее буду, для простоты, называть грозозащитой или УЗИП), хотя сети у них получше наших, а грозовых областей меньше.
Особо актуальна стало применение УЗИП последние 20 лет, когда ученые стали разрабатывать все больше вариантов полевых MOSFET транзисторов, которые очень боятся превышения обратного напряжения. А такие транзисторы используются практически во всех импульсных источниках питания до 1 кВА, в качестве ключей на первичной (сетевой) стороне.
Другой аспект применения УЗИП — обеспечение ограничения напряжения между нейтральным и земляным проводником. Перенапряжение на нейтральном проводнике в сети может возникать, например, при переключении Автомата ввода резерва с разделенной нейтралью. Во время переключения, нейтальный проводник окажется «в воздухе» и на нем может быть что угодно.

Характеристики импульсов перенапряжения

Импульсы перенапряжений в сети характеризуются формой волны и амплитудой тока. Форма импульса тока характеризуется временем его нарастания и спада — для европейских стандартов это импульсы 10/350 мкс и 8/20 мкс. В России, как это случается часто в последнее время, переняли стандарты Европы и появился ГОСТ Р 51992-2002. Числа в обозначении формы импульса означают следующее:
— первая — время (в микросекундах) нарастания импульса тока с 10% до 90% от максимального значения тока;
— вторая — время (в микросекундах) спада импульса тока до 50% от максимального значения тока;

Защитные устройства делятся на классы в зависимости от мощности импульса, который они могут рассеять:
1) Класс 0 (А) — внешняя грозозащита (в данном посте не рассматриваем);
2) Класс I (B) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 25 до 100 кА формой волны 10/350 мкс (защита в вводно-распределительных щитах здания);
3) Класс II ( C) — защита от перенапряжений, характеризующихся импульсными токами амплитудой от 10 до 40 кА формой волны 8/20 мкс (защита в этажных щитах, электрощитах помещений, вводах электропитающего оборудования);
3) Класс III (D) — защита от перенапряжений, характеризующихся импульсными токами амплитудой до 10 кА формой волны 8/20 мкс (в большинстве случаев защита встроена в оборудование — если оно изготовлено в соответствии с ГОСТ);

Приборы защиты от импульсных перенапряжений

Основными двумя приборами УЗИП являются разрядники и варисторы различной конструкции.

Разрядник

Разрядник — электрический прибор открытого (воздушного) или закрытого (наполненного инертными газами) типа, содержащий в простейшем случае два электрода. При превышении напряжения на электродах разрядника определенного значения, он «пробивается», тем самым ограничивая напряжение на электродах на определенном уровне. При пробое разрядника по нему протекает значительный ток (от сотен Ампер до десятков килоАмпер) за короткое время (до сотен микросекунд). После снятия импульса перенапряжения, если не была превышена мощность, которую способен рассеять разрядник — он переходит в исходное закрытое состояние до следующего импульса.

Основные характеристики разрядников:
1) Класс защиты (см. выше);
2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение разрядника;
3) Максимальное рабочее переменное напряжение — предельное длительное напряжение разрядника, при котором он гарантированно не сработает;
4) Максимальный импульсный разрядный ток (10/350) мкс — максимальное значение амплитуды тока с формой волны (10/350) мкс, при котором разрядник не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором разрядник обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения — максимальное напряжение на электродах разрядника при его пробое из-за возникновения импульса перенапряжения;
7) Время срабатывания — время открывания разрядника (практически для всех разрядников — менее 100 нс);
8) (редко указываемый производителями параметр) статическое напряжение пробоя разрядника — статическое напряжение (медленно изменяемое во времени), при котором произойдет открытие разрядника. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 20-30% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;

Выбор разрядника достаточно творческий процесс с многочисленными «плевками в потолок» — ведь мы заранее не знаем значение тока, который возникнет в сети.
При выборе разрядника можно руководствоваться следующими правилами:
1) При установке защиты в вводных щитах от воздушной линии электропередач или в областях, где частые грозы, устанавливать разрядники с максимальным разрядным током (10/350) мкс не менее 35 кА;
2) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, разрядник откроется и выйдет из строя от перегрева);
3) Выбирать разрядники с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 и 2). Обычно напряжение ограничения разрядников класса I от 2,5 до 5 кВ;
4) Между проводниками N и PE устанавливать разрядники, специально для этого предназначенные (производители указывают что они для подключения к N-PE проводникам). Кроме того, эти разрядники характеризуются более низкими рабочими напряжениями, обычно порядка 250 В переменного тока (между нейтралью и землей в нормальном режиме вообще напряжение отсутствует) и большим разрядным током — от 50 кА до 100 кА и выше.
5) Подключать разрядники к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины. Например, при возникновении в проводнике длиной 2 мера сечением 4 мм2 тока 40 кА, на нем упадет (в идеальном случае без учена индуктивности — а она тут играет большую роль) около 350 В. Если таким проводником подключен разрядник, то в точке подключения к сети напряжение ограничения будет равным сумме напряжения ограничения разрядника и падения напряжения на проводнике при импульсном токе (наши 350 В). Таким образом, значительно ухудшаются защитные свойства.
6) По возможности устанавливать разрядники перед вводным автоматическим выключателем и обязательно перед УЗО (при этом необходимо последовательно с разрядником установить предохранитель с характеристикой gL на ток 80-125 А, для обеспечения отключения разрядника от сети при выходе его из строя). Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 80А с характеристикой срабатывания D. Это снизит вероятность ложного срабатывания автомата при срабатывании разрядника. Установка УЗИП перед УЗО обусловлена низкой стойкостью УЗО к импульсным токам, кроме того, при срабатывании разрядника N-PE, УЗО будет ложно срабатывать. Также, желательно УЗИП устанавливать перед счетчиками электроэнергии (что опять же, энергетики не позволят сделать)

Читайте также:  Что такое производственное оборудование гост
Варистор

Варистор — полупроводниковый прибор с «крутой» симметричной вольт-амперной характеристикой.


В исходном состоянии варистор имеет высокое внутреннее сопротивление (от сотен кОм до десятков и сотен МОм). При достижении напряжения на контактах варистора определенного уровня, он резко снижает свое сопротивление и начинает проводить значительный ток, при этом напряжение на контактах варистора изменяется незначительно. Как и разрядник, варистор способен поглотить энергию импульса перенапряжения длительностью до сотен микросекунд. Но при длительном повышенном напряжении, варистор выходит из строя с выделением большого количества тепла (взрывается).
Все варисторы в исполнении на DIN-рейку оснащены тепловой защитой, предназначенной для отключения варистора от сети при его недопустимом перегреве (при этом по локальной механической индикации можно определить, что варистор вышел из строя).
На фото варисторы с встроенным тепловым реле после превышения рабочего напряжения разных значений. При значительном перенапряжении такая встроенная тепловая защита практически не эффективна — варисторы взрываются так, что уши закладывает. Однако, встроенная тепловая защита в варисторных модулях на DIN-рейку достаточно эффективна при любых длительных перенапряжениях, и успевает отключить варистор от сети

Небольшое видео натуралистических испытаний 🙂 (подача на варистор диаметром 20 мм повышенного напряжения — превышение на 50 В)

Основные характеристики варисторов:
1) Класс защиты (см. выше). Обычно варисторы имеют класс защиты II ( C), III (D);
2) Номинальное рабочее напряжение — длительное, рекомендованное производителем рабочее напряжение варистора;
3) Максимальное рабочее переменное напряжение — предельное длительное напряжение варистора, при котором он гарантированно не откроется;
4) Максимальный импульсный разрядный ток (8/20) мкс — максимальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор не выйдет из строя и обеспечит ограничение напряжения на заданном уровне;
5) Номинальный импульсный разрядный ток (8/20) мкс — номинальное значение амплитуды тока с формой волны (8/20) мкс, при котором варистор обеспечит ограничение напряжения на заданном уровне;
6) Напряжение ограничения — максимальное напряжение на варисторе при его открытии из-за возникновения импульса перенапряжения;
7) Время срабатывания — время открывания варистора (практически для всех варисторов — менее 25 нс);
8) (редко указываемый производителями параметр) классификационное напряжение варистора — статическое напряжение (медленно изменяемое во времени), при котором ток утечки варистора достигает значения 1 мА. Измеряется подачей постоянного напряжения. В большинстве случаев оно на 15-20% превышает максимальное рабочее переменное напряжение, приведенное к постоянному (переменное напряжение, умноженное на корень из 2) ;
9) (очень редко указываемый производителями параметр) допустимая погрешность параметров варистора — практически для всех варисторов ±10%. Эту погрешность следует учитывать при выборе максимального рабочего напряжения варистора.

Выбор варисторов также как и разрядников сопряжен с трудностями, связанными с неизвестностью условий их работы.
При выборе варисторной защиты можно руководствоваться следующими правилами:
1) Варисторы устанавливаются как вторая-третья ступень защиты от импульсных перенапряжений;
2) При использовании варисторной защиты II класса совместно с защитой I класса, необходимо учитывать разную скорость срабатывания варисторов и разрядников. Поскольку разрядники медленнее варисторов, если УЗИП не согласовать, варисторы будут принимать на себя бОльшую часть импульса перенапряжения и быстро выйдут из строя. Для согласования I и II классов грозозащиты применяются специальные согласующие дроссели (производители УЗИ имеют их ассортимент для таких случаев), либо длина кабеля между УЗИП I и II классов должна быть не менее 10 метров. Недостатком такого решение является необходимость вреза дросселей в сеть или ее удлинение, что увеличивает ее индуктивную составляющую. Единственным исключением является немецкий производитель PhoenixContact, который разработал специальные разрядники I класса с так называемым «электронным поджигом», которые «согласованы» с варисторными модулями этого же производителя. Эти комбинации УЗИП можно устанавливать без дополнительного согласования;
3) Выбирать максимальное длительное напряжение немного больше предполагаемого максимального сетевого напряжения (в противном случае есть вероятность что при высоком сетевом напряжении, варистор откроется и выйдет из строя от перегрева). Но тут нельзя перебарщивать, поскольку напряжение ограничения варистора напрямую зависит от классификационного (а следовательно, от максимального рабочего напряжения). Примером неудачного выбора максимального рабочего напряжения являются варисторные модули ИЭК с максимальным длительным напряжением 440 В. Если их устанавливать в сеть с номинальным напряжением 220 В, то работа его будет крайне неэффективна. Кроме того, следует учитывать, что варисторы имеют тенденцию к «старению» (т.е. со временем, при многих срабатываниях варистора, его классификационное напряжение начинает снижаться). Оптимальным для России будет применение варисторов длительным рабочим напряжением от 320 до 350 В;
4) Выбирать нужно с как можно меньшим напряжением ограничения (при этом обязательно выполнение правил 1 — 3). Обычно напряжение ограничения варисторов класса II для сетевого напряжения от 900 В до 2,5 кВ;
5) Не соединять параллельно варисторы для увеличения суммарной рассеиваемой мощности. Многие производители защит УЗИП (особенно класса III (D)) грешат параллельным соединением варисторов. Но, поскольку 100% одинаковых варисторов не существует (даже из одной партии они разные), всегда один из варисторов окажется самым слабым звеном и выйдет из строя при импульсе перенапряжения. При последующих же импульсах выйдут из строя цепочной остальные варисторы, поскольку они уже не будет обеспечивать требуемую мощность рассеяния (это тоже самое что соединять параллельно диоды для увеличения общего тока — так делать нельзя)
6) Подключать варисторы к сети проводниками сечением не менее 10 мм2 (даже если сетевые проводники имеют меньшее сечение) и как можно меньшей длины (рассуждения те же, что и для разрядников).
7) По возможности устанавливать варисторы перед вводным автоматическим выключателем и обязательно перед УЗО. Поскольку установить УЗИП перед вводным автоматом никто не позволит — желательно чтобы автомат был на ток не менее 50А с характеристикой срабатывания D (для варисторов II класса). Это снизит вероятность ложного срабатывания автомата при срабатывании варистора.

Краткий обзор производителей УЗИП

Ведущими производителями, специализирующимися на УЗИП низковольтных сетей являются: Phoenix Contact; Dehn; OBO Bettermann; CITEL; Hakel. Также у многих производителей низковольтной аппаратуры, в продукции имеются модули УЗИП (ABB, Schneider Electric и др.). Кроме того, китай успешно копирует УЗИП мировых производителей (поскольку Варистор достаточно простой прибор, китайские производители изготавливают довольно качественную продукцию — например модули TYCOTIU).
Кроме того, на рынке довольно много готовых щитков защиты от импульсных перенапряжения, включающих в себя модули одного или двух классов защиты, а также предохранители для обеспечения безопасности, в случае выхода из строя защитных элементов. В этом случае, щиток закрепляется на стене и подключается к имеющейся электропроводке в соответствии с рекомендациями производителя.
Стоимость УЗИП разнится в зависимости от производителя в разы. В свое время (несколько лет назад), мною был проведен анализ рынка и выбран ряд производителей II класса защиты (некоторые в список не попали, в связи с отсутствием исполнений модулей на требуемое длительное рабочее напряжения 320 В или 350 В).
Как замечание по качеству, могу выделить только модули HAKEL (например PIIIMT 280 DS) — они имеют слабые контактные соединения вставок и изготовлены из горючего пластика, что запрещено ГОСТ Р 51992-2002. На данный момент HAKEL обновили ряд продукции — о ней ничего сказать не могу, т.к. не буду использовать HAKEL больше никогда

Применение УЗИП класса III (D) и защиту цифровых цепей устройств оставим на потом.
В заключение могу сказать, если после прочтения всего у вас появилось больше вопросов, чем после прочтения заголовка — это хорошо, поскольку тема заинтересовала, а она настолько необъятная, что можно не одну книгу написать.

Источник