Меню

Оборудование для комбинированной обработки



Оборудование для комбинированной обработки металлов. Анодно-механическая обработка

Тема 4. Оборудование для комбинированной обработки металлов

Приоритет в развитии комбинированных методов обработки материалов принадлежит нашей стране. Работами советских исследователей показано, что очень перспективным и выгодным является использование в одном процессе размерной обработки различных физических или химических явлений, т. е. сочетания различных электрофизических и электрохимических методов обработки. Образование новых комбинированных методов возможно вследствие подобия кинематики отдельных составляющих процессов, общности технологических характеристик и областей применения. Такое сочетание повышает производительность нового процесса обработки, в ряде случаев устраняет недостатки, присущие каждому отдельному методу, расширяет области технологического использования метода.

Наилучшие результаты достигаются при совмещении в одном методе электроэрозионной, электрохимической, ультразвуковой обработки.

В частности, в последнее время достигнуты успехи в развитии обработки следующими комбинированными методами:

3) ультразвуковая электрохимическая.

4.1. Анодно-механическая обработка

Наиболее широко анодно-механическая обработка с металлическим электродом-инструментом применяется для разрезных операций и заточки режущего инструмента. Эту обработку можно применять практически во всех тех случаях, когда возможна обработка резанием, т. е. для методов обработки, подобных по кинематике токарной, фрезерной, сверлильной, шлифовальной и др. Но в настоящее время анодно-механическую обработку целесообразно использовать только для обработки труднообрабатываемых металлов и сплавов. Анодно-механическая обработка основана на использовании комбинированного процесса электрохимического и электроэрозионного воздействия на обрабатываемое изделие движущегося (вращающегося) электрода-инструмента. При этом, как и при электрохимической обработке, электрод-инструмент подключается к отрицательному полюсу источника тока, электрод-деталь — к положительному. Сущность метода заключается в удалении лишнего материала как за счет анодного растворения обрабатываемого материала, так и за счет электроэрозионного разрушения.

Принципиальная схема обработки показана на рис. 4.1. Деталь-анод 4, закрепленный на рабочем столе 1, находится в среде электролита 2. Металлическому инструменту-катоду 3 сообщается вращательное движение. В результате анодного растворения на поверхности детали образуется пассивирующая пленка, которая удаляется вследствие механического движения (вращения) электрода-инструмента. Такое разрушение обрабатываемого материала наблюдается при малых плотностях тока. Скорость удаления материала при этом составляет 0,03—0,05 мм/мин.

При высоких плотностях тока обработка происходит вследствие электроэрозионного разрушения. В результате электротермического действия тока плавятся вершины микронеровностей обработанной поверхности в местах контакта с электродом-инструментом. Продукты разрушения уносятся из зоны обработки движущимся электродом-инструментом и электролитом.

Питание осуществляется постоянным током при мощности источника питания до десятков киловатт.

В качестве электролита для анодно-механической обработки наиболее часто применяется водный раствор силиката натрия (Na 2SiO 3) плотностью 1,28—1,38 г/см 3 . В зависимости от характера выполняемой работы иногда применяют другие электролиты: а) 3—5% жидкого стекла, 1 % глицерина, остальное — вода; б) 4%-ный водный раствор буры; в) мелкодисперсный водный раствор жидкого стекла (20%), веретенного или трансформаторного масла (6%) с добавками стеариновой кислоты (5% веса масла) и триэтаноламина (0,5% веса воды). Эти электролиты по свойствам не уступают общепринятому электролиту — раствору жидкого стекла в воде, но в отличие от последнего не налипают на поверхность деталей станков и обрабатываемых деталей.

Исходя из сущности метода анодно-механическую обработку можно выполнить в двух режимах:

1. Высокопроизводительные (черновые) режимы при рабочем напряжении 22—30 в. В этих режимах преобладает электроэрозионное разрушение материала. Обработанная поверхность имеет высоту микронеровностей до 500— 600 мкм. Применяются для черновой обработки.

2. Чистовые, или мягкие, режимы. Эти режимы менее производителями и получаются при рабочем напряжении 3—15 в. В этих режимах съем металла происходит только за счет анодного растворения обрабатываемого материала. Качество обработанной поверхности на этих режимах высокое — высота неровностей менее 1 мкм. Применяются для чистотой обработки.

Оба режима, как правило, можно выполнить одним инструментом без замены, т.е. с одной установки инструмента.

Анодно-механичеекая обработка имеет следующие достоинства:

Источник

Комбинированные почвообрабатывающие агрегаты

В последнее годы все большее распространение в отечественном сельском хозяйстве получают комбинированные почвообрабатывающие агрегаты, которые способны за один проход выполнить сразу несколько технологических операций. Аграрии используют такие машины при подготовке полей к севу, а также непосредственно для посева некоторых мелкозернистых культур (например, рапса, различных трав и т.д.). Использование данной технологии имеет как свои преимущества, так и недостатки.

История появление комбинированных агрегатов

Даже после того, как сельское хозяйство было переведено на промышленные рельсы и были изобретены новые дополнительные способы обработки почвы, сам процесс этой обработки принципиально не отличался от того, что было в древности.

Если в доиндустриальную эпоху конь (волы) тащил за собой плуг или борону, то с появлением сельхозтехники этот самый плуг тянул за собой уже трактор. Он делал это значительно быстрее, в том числе за счет того, что вместо одного лемеха у тракторного плуга их стало уже несколько. Однако всё равно это был один плуг, выполнявший лишь одну технологическую операцию — вспашку. Последующие операции, например, боронование, внесение удобрений, посев и т.д. выполнялись отдельно.

Долгое время такая ситуация всех устраивала, никто даже не помышлял о том, что обработка почвы может быть организована иначе. Впервые над идеей создания комбинированных агрегатов, способных за один проход трактора выполнить несколько технологических операций, всерьез задумались в США в 1930-х годах.

Необходимость создания комбинированных машин была вызвана серией катастрофических пылевых бурь в регионе Великих равнин, вызванных, в том числе, экстенсивными методами обработки почвы. Каждый раз, когда трактор американского фермера в очередной раз проходил по одному и тому же участку поля, он лишний раз нарушал целостность и без того тонкого плодородного поля. И когда неблагоприятные погодные факторы сошлись вместе, ветра буквально сдули сотни тысяч квадратных километров пашни, обрушив на города и ранчо региона десятки катастрофических пылевых бурь.

Впечатленные масштабом экологической и экономической катастрофы, американские агрономы пришли к выводу, что сокращение количества проходов техники по полю снизит эрозию верхнего почвенного слоя, а следовательно, уменьшит предпосылки для новых пылевых бурь. Впоследствии эта идея получила широкое признание в западной аграрной науке, поскольку оказалась еще и выгодной экономически. К сегодняшнему дню в большинстве развитых стран мира обработка полей ведется в основном такими комбинированными машинами и агрегатами.

В Советском Союзе достаточно внимательно отнеслись к передовому опыту США и западноевропейских стран. Поскольку данный подход имел вполне очевидные экономические и технологические преимущества (о них мы расскажем чуть дальше), в нашей стране также был налажен выпуск сельскохозяйственного оборудования, позволявшего совместить в себе возможность проведения нескольких технологических операций одновременно. Тем не менее, отечественные комбинированные агрегаты были и остаются достаточно простыми в сравнении с европейскими и американскими системами.

Что такое комбинированные агрегаты?

Комбинированные сельскохозяйственные агрегаты — это сложное навесное (прицепное) оборудование для тракторов, используемое для предпосевной обработки почвы и для посева некоторых сельхозкультур. Они позволяют выполнить несколько технологических операций (или даже сразу все) за один проход.

Поскольку комбинированные агрегаты для обработки почвы представляют собой достаточно сложную инженерную конструкцию, перед проектировщиками подобной техники всегда стоит задача найти оптимальное соотношение между стремлением совместить как можно больше технологических операций в одном агрегате и возможностью сохранить высокий уровень качества выполнения этих операций. Причем учитывать приходится не только сугубо технические проблемы, но и вопрос применяемости такой техники в различных почвенно-климатических условиях.

Кроме того, в идеале комбинированная машина должна не только копировать и совмещать элементарные операции, но и выводить весь технологический процесс на качественно новый уровень. Иными словами, нужно не просто повторить стандартные действия в рамках одного прохода, но и выполнить их качественнее. Правда, на практике эта задача остается скорее идеалом, к которому нужно стремиться, нежели свершившимся фактом.

Читайте также:  Оборудование для покраски грако

В настоящий момент производители агротехники работают по трем основным направлениям при создании комбинированных агрегатов:

  1. Навесные либо прицепные почвообрабатывающие блоки либо сеялки, представляющие собой несколько простых агрегатов, соединенных системой сцепок.
  2. Самоходная машина, на раму которой устанавливают органы для обработки почвы и посева.
  3. В качестве базы берется культиватор или другое почвообрабатывающее оборудование, к которому добавляются высевающие аппараты. Альтернативный вариант —комбинированные посевные агрегаты с навесными почвообрабатывающими органами.

Львиную долю этого рынка сегодня составляют специальные комбинированные агрегаты, состоящие из блоков стандартных рабочих органов — культиваторов, плоскорезов, сеялок, дисковых борон и лущильников. Нередко у таких агрегатов все или часть органов являются съемными, что позволяет легко приспосабливать их для выполнения не только стандартных, но и специальных технологических операций.

Среди всех комбинированных агрегатов наиболее распространены ротационные плоские и сферические диски для обработки почвы на глубину от 8 до 14 см. Их используют преимущественно для подготовки полей под озимые колосовые культуры, а также просто для разуплотнения почвы. При этом большое значение имеет вопрос ширины захвата, ведь агрегат комбинированный широкозахватный позволяет охватить еще больше площади за один проход, нежели узкозахватная машина.

Преимущества и недостатки комбинированных агрегатов

В настоящий момент использование комбинированных агрегатов является широко распространенным явлением во всех технологически продвинутых странах. То есть по факту везде, где поля обрабатывает техника, а не животные.

Особенно сильно развита эта практика в США и Западной Европе, где агропредприятия используют в своей работе самые сложные машины, нередко совмещающие в себе сразу весь комплекс почвообрабатывающих органов. В России еще с советских времен используются в основном самые простые агрегаты, которые совмещают не больше 3-4 операций.

Широкое распространение комбинированных агрегатов недвусмысленно говорит нам о том, что такой подход вполне оправдан и в сравнении с традиционными методами обработки почвы несет в себе массу преимуществ. Комбинированные агрегаты среди прочего позволяют:

  • минимизировать уплотнение почвы при проходе по ней тракторов и других сельскохозяйственных машин, задействованных в обработке поля;
  • снизить расходы топлива и трудозатраты на обработку гектара площади, повысив тем самым энергоэффективность и продуктивность работы агропредприятия;
  • сократить сроки проведения полевых работ, что весьма важно, если погода дает лишь небольшое «окно» для выполнения всех технологических операций.

Кроме того, при обработке полей агрегат комбинированный почвообрабатывающий (АКП) значительно замедляет либо даже обращается вспять негативные процессы формирования на полях ям и углублений на границе проходов и другие подобные явления.

Однако следует отметить, что есть и несколько негативных сторон у использования комбинированной техники. В первую очередь это более низкое качество обработки поля в целом. Если дорогая европейская и американская техника практически лишена этого недостатка (а то и вовсе обеспечивает повышенное качество), то недорогие отечественные агрегаты зачастую дают результат заметно (хотя и не радикально) хуже, чем при использовании традиционных отдельных органов обработки.

Другим немаловажным недостатком является дороговизна таких агрегатов. Нередко выгоднее купить простые плуги, бороны и сеялки по отдельности, чем приобретать комбинированный агрегат, совмещающий в себе всё и сразу.

Наконец, комбинированные агрегаты весят значительно больше и создают значительное большее тягловое сопротивление движению, поскольку больше органов погружено в землю одновременно. По этой причине их можно цеплять только к очень мощным и большим тракторам, количество которых у рядового сельхозпредприятия зачастую невелико.

Классификация и перспективы развития комбинированных агрегатов

За время существования комбинированных агрегатов появилось огромное их разнообразие, поэтому следует дать им некую обобщенную классификацию. Обычно эту технику различают по следующим признакам:

  • по типу сельхозкультуры, под которую они предназначены — зерновые, или злаковые, кукурузные, свекловичные, овощные и кормовые (выращивание кормовых трав);
  • по типу выполняемых операций —комбинированные агрегаты для предпосевной обработки почвы, посевные, по уходу за посевами.
  • по способу агрегатирования — «тандем» (серийная техника, соединяемая между собой последовательно), агрегаты на единой раме (рабочие однооперационные органы могут быть как постоянными, так и сменными), агрегаты, навешиваемые на переднюю навеску трактора (в то же время на заднюю навеску или прицепное шасси навешиваются остальные агрегаты).

Главным преимуществом агрегатов типа «тандем» является их универсальность. Они позволяют использовать штатные орудия по модульному принципу, то есть подключать лишь те, которые нужно в данный момент. Также это позволяет комбинировать орудия под трактора имеющегося класса тяги. В то же время при подключении всех органов комбинированный агрегат получается непомерно большим в своих продольных размерах и ему требуется очень широкая поворотная полоса. К тому же именно агрегаты типа «тандем» являются наиболее критикуемыми по критериям качества обработки почвы. Особенности компоновки просто не позволяют им добиться максимальной эффективности работы.

Комбинированные агрегаты, изготовленные по второй схеме, обычно представляют собой единую прицепную раму (реже самоходное устройство), на которую по мере необходимости вешаются нужные рабочие органы. Многие модели агрегатов этого типа также являются довольно громоздкими и тяжелыми, а их перестройка и наладка порой требует значительных трудозатрат. Например, регулировка комбинированного агрегата АКП 2 5 требует массы времени. Впрочем, эти проблемы свойственны не всем моделям.

Характерной особенностью комбинированных агрегатов третьего типа агрегатирования является включение в набор почвообрабатывающих органов систем внесения удобрений. Главным преимуществом этого типа агрегатов можно считать более равномерную загрузку колесных осей трактора, улучшенную устойчивость и управляемость, а также меньшую ширину поворотной полосы. Равномерная нагрузка на оси важна потому, что она прямо влияет на интенсивность уплотнения почвы под колесами машины.

К числу достоинств комбинированных агрегатов, предусматривающих загрузку передней навески трактора, является также простота обслуживания и меньшие трудозатраты на присоединение рабочих органов к трактору. Это позволяет оперативно переоборудовать трактор под другие технологические процессы, а также перебросить сами рабочие органы на другую машину.

В целом тенденции таковы, что в будущем, вероятно, будет возрастать популярность комбинированных агрегатов, предусматривающих размещение рабочих органов как на задней, так и на передней навеске трактора. При этом немаловажным остается фактор сменяемости рабочих органов. То есть модульная система, при которой рабочие органы можно свободно ставить и убирать за короткое время, является самой перспективной.

Источник

Комбинированные методы механической обработки

Традиционные способы механической обработки на предприятиях с высокой организацией труда достигли совершенства и практически не имеют резервов повышения производительности. Комбинированные способы механической обработки позволяют снизить энергические затраты, в 1,5-2 раза повысить загрузку и использование мощности станков, сократить производственные площади и оборудование. Они создают условия для организации непрерывных технологических процессов.

Комбинированные методы механической обработки основаны на комплексном воздействии на заготовку резанием, давлением, электрическим током или магнитным полем. Доминирующим процессом является резание. Соответственно процессы называются: деформационно-механическая обработка; вибромеханическое резание; электромеханическая обработка, магнитно-абразивная обработка.

1. Деформационно-механическая обработка

Деформационно-механическая обработка – это метод, совмещающий пластическую деформацию и резание. Сначала производится пластическая деформация, а затем резание. Метод получил название резание с опережающим деформированием.

Схемы обработки резанием с опережающим пластическим деформированием применительно к типовым операциям резания представлены на рисунке 1

Схемы комбинированной обработки с опережающим пластическим деформированием

Рисунок 1 — Схемы комбинированной обработки с опережающим пластическим деформированием: а — точение; б — протягивание; в — шлифование; 1- деформирующий ролик; 2 — резец; 3 — протяжка; 4 — абразивный инструмент; t — глубина резания; tдеф – глубина деформируемого слоя; Vкр,Vпр — соответственно круговая и продольная скорости

Воздействие деформирующего инструмента может быть оказано на поверхность резания (рис. 1 а), или на обрабатываемую поверхность (рис. 1 б, в). На черновых операциях применение опережающей деформации приводит к повышению стойкости режущего инструмента и производительности.

Читайте также:  Сделки по приобретению оборудования

На чистовых операциях, выполняемых абразивным инструментом, опережающую деформацию используют для повышения качества поверхности.

Процесс опережающей деформации может обеспечить эффективное стружкодробление с помощью рифленого ролика, применение которого повышает стойкость инструментов в 2,8-4,5 раза.

2. Вибромеханическое резание

Механическая обработка с наложением вибрации находит все более широкое применение. Можно выделить два направления наложения вибрации. Первое направление связано с гашением неблагоприятных вибраций при механической обработке, вызывающих снижение качества поверхности, точности обработки и стойкости инструмента. Особое значение это направление приобретает при резании труднообрабатываемых материалов.

Второе направление связано с достижением положительного эффекта в процессе наложения вибраций. Применение вибрационного резания обеспечивает эффективное дробление стружки, а также значительное улучшение обрабатываемости резанием разнообразных материалов.

Общими физическими особенностями резания с вибрацией являются:

  • кратковременное периодическое увеличение скорости резания;
  • переменная циклическая нагрузка на деформируемый материал;
  • снижение сил трения на поверхностях контакта инструмента со стружкой и обрабатываемой заготовкой;
  • повышенная эффективность применения смазочно- охлаждающей жидкости.

По направлению действия вибрации могут быть осевые, радиальные или тангенциальные.

Резание с осевыми колебаниями применяют для дробления стружки. Основными особенностями вибрационного резания с осевыми колебаниями являются большое изменение подач (толщины среза) за один цикл колебаний инструмента, а также существенное изменение рабочих углов резания. Во всех случаях при точении глубина износа передней поверхности резцов уменьшается.

Наиболее эффективно применение осевого вибрационного резания при сверлении, в процессе которого значительно улучшаются условия дробления и удаления стружки. При обычном сверлении в процессе передвижения по винтовой канавке стружки происходит ее заклинивание и периодическое образование пробок, что вызывает необходимость остановки и вывода сверла из отверстия. Это обстоятельство затрудняет автоматизацию сверления.

Вместе с возможностью автоматизации вибрационное сверление позволяет увеличить производительность обработки в 2,5 раза и повысить стойкость инструмента в три раза.

Резание с радиальной вибрацией отрицательно сказывается на результатах обработки — увеличиваются параметры шероховатости, поскольку перемещение режущей кромки при вибрации непосредственно фиксируется на обработанной поверхности. Неудовлетворительны и условия работы режущей кромки, поскольку большая нагрузка при колебательном движении воспринимается режущей кромкой, как следствие, происходит повышенный износ и выкрашивание кромок.

Резание с тангенциальными колебаниями, т. е. с колебаниями в направлении окружной скорости резания, применяют для существенного повышения производительности и стойкости инструмента. Метод показал положительные результаты при точении, фрезеровании, развертывании, нарезании резьб, шлифовании, абразивной заточке инструмента.

3. Электромеханическая обработка

Сущность электромеханической обработки заключается в том, что через поверхность контакта инструмента и заготовки пропускается ток большой силы и низкого напряжения. Выступы микронеровностей поверхностного слоя подвергаются сильному нагреву и под силовым воздействием инструмента деформируются и сглаживаются, а поверхностный слой упрочняется за счет быстрого отвода тепла в основную массу металла и скоростного охлаждения. При этом нагрев до температур фазовых превращений является необходимым условием упрочняющих режимов обработки.

Эффект упрочнения достигается благодаря тому, что реализуются сверхбыстрые скорости нагрева и охлаждения и достигается высокая степень измельченности зерен.

Электромеханическая обработка характеризуется следующими особенностями:

  1. тепловое и силовое воздействие на поверхностный слой осуществляется одновременно;
  2. тепловыделение в зоне контакта инструмента и заготовки является следствием действия двух источников теплоты — внешнего и внутреннего;
  3. термический цикл (нагрев, выдержка и охлаждение) весьма кратковременны и измеряется долями секунды.

Существуют различные способы подвода электрического тока к месту контакта инструмента и заготовки (рис. 2).

Способы подвода электрического тока

Рисунок 2 — Способы подвода электрического тока: а — через неподвижный контакт; б — через вращающиеся элементы оборудования; в — через ролик; г — через сдвоенные ролики

Каждый из способов подвода тока обладает своими преимуществами и недостатками. В зависимости от назначения и типа оборудования для электромеханической обработки могут быть использованы токарные, фрезерные, сверлильные и другие металлорежущие станки. Различают следующие режимы электромеханического упрочнения.

Жесткий упрочняющий режим, предполагающий высокую поверхностную плотность тока (700…1500 А/мм²), низкую скорость обработки (0,5…5 м/мин) и невысокие требования к параметрам шероховатости. В поверхностном слое образуется мелкодисперсный мартенсит, при этом отсутствуют значительные пластические деформации.

Средний упрочняющий режим осуществляется при поверхностной плотности тока 800 А/мм² и характеризуется наличием ферритно — мартенситной структуры и значительных деформаций поверхностного слоя. Скорости обработки примерно равны или несколько больше скоростей при жестком режиме.

Отделочный режим характеризуется отсутствием фазовых превращений, невысокой поверхностной плотностью тока и высокими скоростями обработки (10..120 м/мин). Применяется при поверхностном упрочнении. При этом достигается высокая производительность.

Оптимальные режимы электромеханического упрочнения позволяют добиться не только требуемых параметров шероховатости, но и получить завершенную структуру поверхностного слоя с повышенной износостойкостью.

Сжимающие остаточные напряжения в поверхностном слое от сил деформирования оказывают упрочняющее влияние на различные виды разрушающих нагрузок. Упрочнение поверхностных слоев повышает их коррозионную стойкость. Это объясняется не только высокой степенью упрочняемости, особой структурой и дисперсностью поверхностного слоя, но и совокупностью благоприятных физико- механических свойств этого слоя.

В связи с повышением эксплуатационных свойств электромеханическое упрочнение целесообразно применять для широкой номенклатуры деталей, работающих в различных условиях трения изнашивания.

4. Магнитно-абразивная обработка

Сущность магнитно-абразивной обработки заключается в абразивном удалении припуска путем создания непосредственно в зоне резания магнитного поля от внешнего источника. В качестве абразивного инструмента применяют: магнитно-абразивные порошки, абразивные суспензии, магнитно-реологические жидкости.

Перемещение металлической заготовки в магнитном поле сопровождается появлением в ней индукционных токов переменного направления при многократном перемагничивании.

Абразивное резание с наложением этих явлений имеет ряд особенностей. В результате действия магнитного и электропластического эффектов изменяются прочностные характеристики обрабатываемого материала, преимущественно в приповерхностном слое. Снижаются силы, необходимые для резания и пластического выглаживания обрабатываемой поверхности; облегчаются условия для формирования поверхности с малыми параметрами шероховатости и с увеличенной опорной площадью.

Электрическая заряженность обрабатываемой поверхности интенсифицирует электрохимические явления. Этим объясняется высокая эффективность применения химически и поверхностно активных смазочно-охлаждающих жидкостей в процессах магнитно- абразивной обработки по сравнению традиционными видами абразивной обработки.

Механическими особенностями магнитно-абразивной обработки является:

  • непрерывный контакт порошка с обрабатываемой поверхностью, позволяющий повышать точность геометрических размеров и формы, а так же снизить циклические нагрузки на систему «станок – приспособление — инструмент — деталь»;
  • отсутствие жесткого крепления абразивного зерна в связке, способствует самопроизвольному нивелированию режущего инструмента относительно обрабатываемой поверхности;
  • возможность управления жесткостью инструмента позволяет регулировать съем металла с формообразующей поверхности;
  • отсутствие трения связки о поверхность изделия существенно снижает температуру в зоне абразивной обработки и шероховатость Ra с 1,25…0,32 до 0,08…0,01.

В процессах магнитно-абразивной обработки используют магнитно-абразивный порошок. Магнитное поле создают с помощью специальных магнитных индукторов. На активной поверхности магнитных индукторов и в рабочем зазоре порошок удерживается силами магнитного поля и силами трения порошка о поверхность индуктора. Необходимые для абразивного резания силы создаются благодаря сжатию порошковой среды в рабочей зоне магнитными силами и распорными давлениями. Силы трения в контакте порошка с заготовкой создают дополнительные давления в порошковой среде и на ее границах.

Схемы магнитно-абразивной обработки представлены на рисунке 3.

Схемы магнитно-абразивной обработки порошком

Рисунок 3 — Схемы магнитно-абразивной обработки порошком: а — плоских поверхностей; б — наружных цилиндрических поверхностей вращения с порошком в рабочей зоне; в — фасонных наружных и внутренних поверхностей с порошком в рабочих зазорах; г — проволоки путем протягивания через вращающуюся воронку; д — листового материала; 1- магнитный индуктор; 2 — активная поверхность; 3 — рабочий зазор

Магнитно-абразивную обработку осуществляют на специализированных станках, снабженных специальной технологической оснасткой для МАО. Конструкции станков предполагают наличие приводов рабочих и вспомогательных движений, магнитный индуктор, бункер для порошка с дозатором, устройство для очистки рабочей зоны от отработанного порошка.

Читайте также:  Предаварийное состояние оборудования это

Магнитно-абразивную обработку порошком применяют на отделочных технологических операциях для полирования поверхностей, их очистки от оксидных и химических пленок, удаления мелких заусенцев, скругления кромок, отделки и упрочнения режущих и штамповых инструментов.

Источник

Оборудование для комбинированной обработки воды

Аппаратные методы дезинфекции позволяют значительно сокращать применение химических реагентов. Но каждый из таких методов имеет какие-то свои недостатки. Чтобы улучшить качество дезинфекции без увеличения использования химических реактивов, применяются установки комбинированной обработки воды.

В нашем каталоге представлены устройства, в которых реализованы две разных комбинации методов аппаратной дезинфекции:

  • УФ-обработка с озонированием;
  • УФ-обработка с ионизацией.

Так как в обоих типах оборудования используется УФ-обработка, то они монтируются после фильтровальных установок. Это связано с тем, что наличие механических примесей в водном потоке снижает эффективность бактерицидной обработки ультрафиолетом.

УФ-излучение хорошо уничтожает большинство микроорганизмов, но его действие ограничено границами рабочей камеры. Поэтому в качестве дополнительной обработки применяется озонирование или электрохимическая генерация ионов меди.

В установках озонирования вода после ультрафиолетовой обработки насыщается озоном. Затем она поступает в контактную емкость, где избыточный газообразный озон подвергается разложению и превращается в кислород. После контактной емкости вода с растворенным озоном подается в бассейн, где продолжается окисление микрофлоры, органических загрязнений и растворенных химических примесей.

Ионизаторы имеют компактные размеры. В их основе лежат УФ-обеззараживатели воды. Электроды находятся в рабочей камере с UV-лампой. При прохождении воды через устройство вода дезинфицируется ультрафиолетом и насыщается ионами меди. Ионы меди подавляют развитие водорослей и других микроорганизмов в бассейне.

Также в нашем каталоге представлены устройства автоматического хлорирования воды с использованием серебросодержащих гранул. Благодаря этим гранулам потребление хлорных дезинфекторов можно снизить

Об особенностях применения оборудования комбинированной воды можно дополнительно узнать у наших технических специалистов. Для связи воспользуйтесь любым удобным способом, указанном на сайте.

Источник

Комбинированные станки

Комбинированные станки для обработки металлов сегодня все больше закрепляются на рынке. Эти станки, в основном, создаются на основе токарного или фрезерного станка с расширением технологических возможностей.

Устройство и принцип работы токарного комбинированного станка

Рассмотрим детально, из чего состоит и как работает токарный комбинированный станок на примере одного из популярных сегодня брендов PROMA SKF-800.

Комбинированные станки

Рисунок 1. Комбинированный токарный станок PROMA SKF-800.

Рассматриваемый станок состоит из следующих основных элементов.

  1. Станина. Здесь применена современная компоновка станков, в которой станина не является отдельной частью, служащей лишь для опоры. Помимо функции основания станка станина служит направляющей для перемещения подвижных частей.
  2. Передняя стойка. Включает в себя множество элементов. На стойке находится передняя бабка токарной части станка, коробка скоростей, приводной электродвигатель, сверлильная головка, а также различные рычаги управления.
  3. Электрический шкаф. Вмещает электроаппаратуру станка. В нем находятся реле, предохранительные элементы, электрические схемы управления скоростями вращения и подач. Имеются основные управляющие кнопки пуска и остановки, а также аварийного отключения питания станка.
  4. Фартук. Служит для перемещения суппорта с резцедержателем по направляющим станины в продольном направлении. Может работать как в режиме автоматической подачи, так и управляться вручную при помощи маховиков.
  5. Суппорт. Находится на фартуке и предназначен для подачи резца непосредственно на обрабатываемую деталь. Способен перемещаться как в продольном, так и в поперечном направлении. Тонкая подача в процессе обработки осуществляется именно при помощи суппорта. Движением фартука выполняется лишь подвод резца к детали.
  6. Каретка с резцедержателями. На этом станке каретка четырехпозиционная, поворотная, с возможностью установки ее под углом к обрабатываемой детали.
  7. Задняя бабка с пинолью. Служит в качестве второй точки для закрепления деталей большой длины. Также может быть держателем для осевого инструмента (сверла, зенкера, развертки или метчика). Для расширения технологических возможностей предусмотрена установка конуса Морзе. Задняя бабка способна передвигаться по направляющим станины. Пиноль также имеет возможность подачи. Подача пиноли осуществляется в ручном режиме при помощи маховика.
  8. Люнет (рис. 2). Служит для промежуточного закрепления детали в том случае, если технология обработки требует этого. Обычно люнет применяется, когда обрабатываемая деталь имеет большую длину и малый диаметр. В этом случае люнет не позволяет заготовке отклоняться от оси вращения под воздействием давления резца. Это обеспечивает требуемую точность обработки.
  9. Сверлильная головка. Благодаря оснащению станка сверлильной головкой он получил к названию приставку «универсальный». Сверлильная головка на конкретной модели станка может проделывать отверстия лишь в плоскости, перпендикулярной оси вращения. На некоторых других модификация подобных станков сверлильная головка может отклоняться от оси вращения для проделывания отверстий, находящихся не в одной плоскости с осью.

Комбинированные станки

Рисунок 2. Люнет.

Такие станки применяются на небольших и средних предприятиях, где производство не поставлено на конвейер, и требуется разноплановое использование металлорежущих приспособлений. Комбинированные станки часто используются на ремонтных производствах, где каждый случай ремонта индивидуален.

Комбинированные токарно-фрезерные станки.

Этот тип сочетает в себе возможности токарного и фрезерного станков. Конечно, функции фрезерования здесь реализованы не в полной мере. Но для простых фрезерных операций комбинированный токарно-фрезерный станок вполне подходит.

Рассмотрим конструкцию токарно-фрезерного комбинированного станка на примере распространенной модели WMP290VFx700 (рис. 3)

Комбинированные станки

Рисунок 3. Комбинированный токарно-фрезерный станок WMP290VFx700.

Этот станок, помимо стандартных для токарного станка элементов, имеет фрезерный блок. Крепится он в центральной части станка. Фрезерный блок способен перемещаться в продольном и поперечном направлении. Имеет свой электропривод и модуль электронного управления. Однако рабочие движения фрезерной части станка могут быть увязаны с токарной частью.

На рассматриваемом станке возможно осуществление вертикального фрезерования. Подача фрезы на деталь может осуществляться как в ручном, так и в автоматическом режиме.

Комбинированные станки с ЧПУ

Сегодня станки с ЧПУ постепенно вытесняют классические варианты с ручным управлением. Это является закономерным явлением. Ведь для работы со станком, который управляется программно, необходимы только знания, как правильно настроить программу согласно технологическому процессу. Мастерство в области обращения с рычагами управления станком отходит на второй план.

Комбинированные станки с ЧПУ (рис. 4), благодаря максимальному использованию технологических возможностей, способны выполнять очень широкий спектр металлорежущих операций.

Комбинированные станки

Рисунок 4. Комбинированный станок с ЧПУ

Одним из условий создания универсального станка с ЧПУ является оснащение его двумя суппортами, револьверной головкой с собственным приводом для установки сверл и фрез, а также механизмом перехвата заготовки из одного шпинделя в другой. Этого достаточно для выполнения широкого комплекса токарных, сверлильных и фрезерных операций. Иногда такие станки способны за один установ из прутка или другого профиля изготовить полностью законченную деталь, которая не требует доработки.

Фрезерно-строгальный комбинированный станок

Этот тип станка применяется преимущественно в деревообрабатывающей промышленности. Фрезерно-строгальный комбинированный станок (рис. 5) имеет большой стол для закрепления обрабатываемой детали.

Комбинированные станки

Рисунок 5. Фрезерно-строгальный станок.

Для совмещения операции фрезерования и строгания, в основном, за основу берутся горизонтально-фрезерные станки. Фреза заменяется строгальным резцом. Чтобы обеспечить необходимое усилие для осуществления операции строгания, привод фрезерной головки должен обладать достаточной мощностью.

Источник