Электромагнитное излучение. Нормирование и специфика контроля
ГБУ «Центр экспертиз, исследований и испытаний в строительстве» проводит разносторонние измерения физических факторов окружающей среды. Наряду с показателями, которые у многих на слуху, Лаборатория санитарно-эпидемиологического и радиационного контроля проводит измерения электромагнитных полей.
Электромагнитное излучение также, как и физические факторы может оказывать негативное воздействие на здоровье человека. В трудовой деятельности большинство из нас соприкасается с большим количеством источников электромагнитного излучения. Примером таких источников является офисная техника, персональные компьютеры и т.д. С электромагнитным излучением мы сталкиваемся и вне рабочей деятельности. Это излучение мобильных телефонов, бытовой техники, базовых станций и линий электропередач (ЛЭП).
Размер негативного влияния прямо пропорционален мощности и обратно пропорционален расстоянию до источника, способного излучать электромагнитные волны. То есть, чем ближе к нам прибор и чем он мощнее, тем больший вред будет нанесен нашему организму. Влияние электромагнитного излучения носит аккумулятивный характер, т.е. для появления каких-либо последствий необходимо продолжительное и систематическое влияние. Опасным в данной ситуации является отсутствие видимых причин воздействия электромагнитных волн. К тому же обнаружение электромагнитных волн без специального оборудования почти невозможно. Электромагнитное излучение может вызывать: головокружения, головные боли, бессонницу, усталость, ухудшение концентрации внимания, депрессивное состояние, повышенную возбудимость, раздражительность, резкие перепады настроения и т.д.
Контроль электромагнитного излучения, в основном, проводится при комплексе процедур Специальной Оценки Условий Труда (СОУТ), но проведение измерений и вне СОУТа являются актуальной задачей. Электромагнитные поля подразделяются на ближнюю зону индукции и дальнюю зону. При проведение комплексного измерения электромагнитного излучения, учитываются два компонента: электрическая составляющая, магнитная составляющая. Экспертиза проводится в жилых и нежилых домах, в производственных цехах и на других объектах. Современное профессиональное оборудование позволяет быстро и точно провести измерение электромагнитного излучения. Лаборатория ГБУ ЦЭИИС для замеров использует прибор на базе шумомера-виброметра, анализатора спектра в сочетании с внешней антенной для измерения напряженности электрических и магнитных полей ПЗ-80. Данный прибор сочетает в себе портативность, высокую точность и модульность.
Измерения проводят несколькими способами, в зависимости от проверяемого объекта. При измерении электромагнитного излучения непосредственно от оборудования, чувствительный зонд располагают на расстоянии 20 см от источника, перемещая его в пространстве так, чтобы поверхность зонда стала перпендикулярна волнам. Далее производят его фиксацию на небольшой период времени до установления постоянных значений.
При контроле рабочих мест замеры производятся на 3-х высотах (0,5м; 1,0м; 1,7м или 0,5м; 1,0м; 1,4м), в зависимости от доминирующего рабочего положения. При этом замер производиться непосредственно на рабочем месте, удаление от источника не имеет значение и направлять зонд перпендикулярно линиям волн не требуется.
Нормы для электромагнитного излучения отличаются в зависимости от объектов контроля и составляют:
— для постоянного магнитного поля на рабочих местах
Источник
Нормы излучения для оборудования
СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА
ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ РАДИОЧАСТОТ
Допустимые уровни на рабочих местах и требования к проведению контроля
Occupational safety standards system.
Electromagnetic fields of radio frequencies.
Permissible levels at work-places and requirements for control
Дата введения 1986-01-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством здравоохранения СССР, Министерством здравоохранения РСФСР, Всесоюзным Центральным Советом профессиональных Союзов, Государственным комитетом СССР по стандартам
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29.11.84 N 4034
3. Стандарт полностью соответствует СТ СЭВ 5801-86
5. Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)
6. ИЗДАНИЕ (февраль 2002 г.) с Изменением N 1, утвержденным в ноябре 1987 г. (ИУС 2-88)
Настоящий стандарт распространяется на электромагнитные поля (ЭМП) диапазона частот 60 кГц-300 ГГц.
Стандарт устанавливает допустимые уровни ЭМП на рабочих местах персонала, осуществляющего работы с источниками ЭМП, и требования к проведению контроля.
Стандарт не распространяется на ЭМП, создаваемые микрополосковыми СВЧ-устройствами; на случаи кратковременных эпизодических воздействий ЭМП с общей продолжительностью не более 15 мин в неделю; на работы, проводимые военнослужащими Вооруженных Сил СССР.
Стандарт полностью соответствует СТ СЭВ 5801-86 диапазона частот 60 кГц-300 МГц.
(Измененная редакция, Изм. N 1).
ВНЕСЕНА поправка, опубликованная в ИУС N 4, 2021 год
Поправка внесена изготовителем базы данных
1. ДОПУСТИМЫЕ УРОВНИ ВОЗДЕЙСТВИЯ ЭМП РАДИОЧАСТОТ
1.1. ЭМП радиочастот следует оценивать показателями интенсивности поля и создаваемой им энергетической нагрузкой.
В диапазоне частот 60 кГц-300 МГц интенсивность ЭМП характеризуется напряженностью электрического (Е) и магнитного (Н) полей, энергетическая нагрузка (ЭН) представляет собой произведение квадрата напряженности поля на время его воздействия. Энергетическая нагрузка, создаваемая электрическим полем, равна , магнитным —
.
В диапазоне частот 300 МГц — 300 ГГц интенсивность ЭМП характеризуется поверхностной плотностью потока энергии (далее плотность потока энергии — ППЭ), энергетическая нагрузка представляет собой произведение плотности потока энергии поля на время его воздействия
.
1.2. Предельно допустимые значения Е и Н в диапазоне частот 60 кГц-300 МГц на рабочих местах персонала следует определять исходя из допустимой энергетической нагрузки и времени воздействия по формулам
;
,
где и — предельно допустимые значения напряженности электрического, В/м, и магнитного, А/м, поля;
— время воздействия, ч;
и
— предельно допустимые значения энергетической нагрузки в течение рабочего дня, (В/м) · ч и (А/м) · ч.
Максимальные значения , и ,
указаны в таблице.
Предельные значения в диапазонах частот, МГц
Источник
Методы защиты от электромагнитного излучения
Каждая квартира таит в себе опасность. Мы даже не подозреваем, что живём в окружении электромагнитных полей (ЭМП), которые человек не может ни видеть, ни чувствовать, но это не значит, что их нет.
С самого зарождения жизни на нашей планете существовал стабильный электромагнитный фон (ЭМФ). Долгое время он был практически неизменен. Но, с развитием человечества, интенсивность данного фона стала расти с неимоверной скоростью. Линии электропередач, возрастающее число электроприборов, сотовая связь — все эти новшества стали источниками «электромагнитного загрязнения». Как электромагнитное поле влияет на человеческий организм, и каковы могут быть последствия этого воздействия?
Что такое электромагнитное излучение?
Термином обозначаются волны, возникающие при возмущении электрического и магнитного полей, распространяемых в пространстве.
Классификация электромагнитного излучения базируется на спектре частот, длине волн и поляризации. К поляризованному ЭМИ относится то, где колебания волн осуществляются в одной плоскости. Длина волн может колебаться от 5 пикометров (пм) до десятков километров.
Электрические заряды, находящиеся в движении с ускорением, формируют излучение. Распространение волн происходит как в плотной среде, так и в вакуумной, но скорость распространения ЭМИ в веществе ниже.
Источники электромагнитных излучений
Степень напряженности излучения электромагнитного поля определяется уровнем ЭМИ неприродного происхождения. Высокоуровневые источники:
- линии электропередач;
- электротранспорт;
- лифты;
- мобильные, телевизионные и радиовышки;
- трансформаторы.
Низкий уровень излучений характерен для компьютерных дисплеев, бытовых приборов, систем снабжения электроэнергией. Жесткие ионизирующие волны излучает медицинская диагностическая техника (рентген, компьютерная томография). Излучение обладает свойствами волн и частиц, которые хорошо демонстрируют явление фотоэффекта, где энергия каждого электрона определяется частотой, а не интенсивностью падающего света.
Электромагнитное поле производится движущимися зарядами и токами. Теория электромагнитного поля, созданная Максвеллом, поясняет электромагнитную индукцию: изменение магнитного поля в одной точке пространства влечет образование электрического поля и наоборот. Эти порождающие друг друга поля сливаются в единое электромагнитное поле (ЭМП).
Наличие в поле замкнутого проводника приводит к появлению индукционного тока. При максимальной амплитуде тока и направленном вверх векторе скорости положительных зарядов во всех точках антенны заряд, приходящийся на единицу ее длины, равен нулю.
Установленные нормы ЭМИ для человека
Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.
Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.
Вот безопасные для здоровья нормы:
- 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
- 0,3-3 МГц, при напряженности 15 В/м,
- 3-30 МГц – напряженность 10 В/м,
- 30-300 МГц – напряженность 3 В/м,
- 300 МГц-300 ГГц – напряженность 10 мкВт/см2.
При таких частотах работают гаджеты, радио- и телеаппаратура.
Виды электромагнитного излучения
ЭМИ разделено на виды по характеристикам длины и частоты.
Длина волн колеблется в таких диапазонах:
Диапазоны электромагнитного излучения
- Радиоволны (от 0,1 мм до 10 км и более) делятся на короткие, ультракороткие, средние, длинные и сверхдлинные. Ультракороткие радиоволны относятся к сверхвысокочастотным (СВЧ) волнам.
- Инфракрасные лучи (от 1 мм до 780 нм).
- Ультрафиолетовые лучи (от 380 мм до 10 нм).
- Видимый свет (от 780 мм до 380 нм).
- Рентген-излучение (от 10 нм до 5 пм).
- Гамма-лучи (до 5 пм).
Частота волн варьируется от 30 кГц (для радиоволн) до 6×10¹9 Гц и более (для гамма-лучей).
Волны разной длины образуются разными способами:
- рентгеновские появляются тогда, когда быстро движущиеся электроны переходят в состояние с меньшей энергией вследствие торможения;
- ультрафиолетовое излучается вследствие движения ускоренных электронов;
- инфракрасное излучение испускается раскаленными предметами;
- радиоволны образуются из высокочастотных токов, движущихся по антеннам;
- ионизирующее гамма-излучение испускается в процессе ядерных реакций.
Вышеперечисленные виды волн поглощаются веществами неодинаково: рентгеновские и гамма-волны проникают сквозь ткани организма и почти не поглощаются, инфракрасные лучи проходят сквозь ряд непрозрачных объектов, при поглощении происходит нагрев вещества.
Источники излучения
По природе возникновения источники ЭМИ бывают искусственными (электроприборы и механизмы) и природными (поле Земли, атмосферные явления, ядерный синтез).
Излучение передвигается от источника к приемнику на большой скорости. Согласно большинству теорий, если они разделены вакуумным пространством или разреженным газом, скорость передвижения волн равна скорости света (300 тыс. км/с).
Все виды излучений движутся в свободном пространстве одинаково быстро, различной будет только частота колебаний в секунду.
Источники электромагнитных излучений в быту
Источники электромагнитных излучений:
- нагретые тела (лампы накаливания, радиаторы);
- радиоактивные элементы;
- линии электропередач;
- радио- и телепередатчики;
- лазерные установки;
- станции сотовой связи;
- радиолокационные и релейные станции;
- ядерные и космические процессы;
- железнодорожный и электротранспорт;
- бытовая электротехника.
Источники электромагнитных волн есть в каждой квартире (телевизоры, холодильники, микроволновые печи, Wi-Fi-роутеры, мобильные телефоны). Аэрогрили, холодильники с системой размораживания, микроволновые печи, мобильные телефоны и компьютеры представляют наибольшую электромагнитную опасность. Чем ближе человек находится к источнику и чем выше его мощность, тем большее воздействие на организм оказывает ЭМИ.
Как проверить уровень электромагнитного излучения в домашних условиях
Точно обрисовать, как обстоят дела с электромагнитным излучением в вашем доме, могут только специалисты. Когда в службу СЭС поступает объявление о превышении допустимой нормы ЭМИ, на место выезжают работники со специальными приборами, позволяющими получить точные данные. Показатели обрабатываются. Если они завышены, предпринимаются определенные меры. Первым делом выясняют причину неполадки. Это может быть ошибка в строительстве, проектировании, неправильная эксплуатация.
Для самостоятельного определения степени излучения понадобятся отвертка с индикатором и радиоприемник.
- Выдвиньте антенну из приемника;
- Прикрутите к ней проволочную петлю диаметром 40 см;
- Настройте радио на пустую частоту;
- Обойдите помещение. Прислушивайтесь к звукам приемника;
- Место, где слышатся отчетливые звуки, и является источником излучения;
- Поднесите индикаторную отвертку со светодиодом. Индикатор станет красным, а интенсивность цвета скажет о силе излучения.
Увидеть значение в цифрах позволит ручной прибор. Он работает на разных частотах и улавливает напряжение электромагнитного поля. Прибор настраивается на нужный режим частот, выбирая единицы измерения: вольт/метр или микроватт/см2, отслеживает выбранную частоту и выводит результат на компьютер.
Также хорошим прибором является АТТ-2592. Устройство портативное, имеет дисплей с подсветкой. Измерение выполняет изотропным методом, автоматически выключается через 15 минут.
Влияние ЭМИ на человека
Продолжительное воздействие электромагнитных излучений на организм приводит к развитию многих заболеваний, включая генетические мутации. Это объясняется высокой биологической активностью ЭМП. Человек подвергается облучению не только в производственных условиях, но и в бытовых — в квартире или транспорте.
Излучения могут воздействовать на организм местно и на масштабном уровне. Последний вариант характерен для линий электропередач, примером местного влияния может служить мобильный телефон. Воздействие с накопительным эффектом, постепенно причиняет вред головному мозгу и другим органам.
Флюксметр (прибор для измерения интенсивности ЭМИ)
Вычислить степень загрязненности помещения электромагнитными излучениями можно с помощью флюксметра (прибора для измерения интенсивности ЭМИ). Излучения с большей длиной волны способны проникать глубоко в ткани, волны диапазона СВЧ проходят через верхний слой эпидермиса, вызывая его нагревание.
Как применить метод на практике
- Уложенная под штукатурку металлическая арматура — идеальный экран от стороннего излучения. Разумеется, при условии, что сетка заземлена. Пусть это не вызывает ассоциаций с сюжетами из фильмов про агента 007 – материал продается в любом строительном магазине.
Правда у этих средств защиты есть побочный эффект: сквозь такие стены и окна не пробивается сигнал сотовой связи. Радио и телепередачи также будут приниматься лишь на внешнюю антенну. С учетом пользы для здоровья, это не проблема.
- А бытовые приборы, расположенные внутри, необходимо подключать к шине заземления. Большинство электрооборудования имеет металлический корпус (даже пластиковые на первый взгляд телевизоры и музыкальные центры, имеют внутри токопроводящий каркас). Уровень излучение у заземленной техники приближается к нулю.
Санитарные нормы
Безопасность электромагнитной обстановки регулируется стандартами. Санитарные нормы электромагнитного излучения для стран разные. В России верхней границей безопасной нормы считается 0,2 мкТл.
Допустимое расстояние от населенных пунктов до высоковольтных линий электропередач определяется классом их напряжения.
Линии ультравысокого напряжения должны быть размещены не ближе 300 м от города или поселка. Норма излучений от мобильных станций в разных странах колеблется от 2,5 мкВт на 1 см² до 100 мкВт на 1 см².
На производстве границы нормы плотности потока энергии ЭМП следующие:
- 25 мкВт на 1 см² (при 8-часовом воздействии);
- 100 мкВт на 1 см² (при 2-часовом воздействии).
Для сверхвысокочастотных волн установлена санитарная норма не более 10 Вт на 1 м².
Как понять, подвергаетесь ли вы опасности излучения ЭМП
Предупрежден — значит вооружен. Постарайтесь максимально точно узнать все о ваших электроприборах в плане воздействия электромагнитного поля. Возможно, понадобится пригласить специалистов СЭС. Затраты на выявление вредоносных приборов окупятся сохранением здоровья.
Это касается вашего жилища. На территории общего пользования, а также на предприятиях (в конторах), действуют санитарные нормы. Если у вас есть подозрение, что эти нормы нарушаются (немотивированное ухудшение состояния, помехи на телевизоре, музыкальном проигрывателе) — обратитесь в подразделение СЭС. Либо вы получите утешительный ответ, что вашему здоровью ничего не угрожает, либо ответственный орган примет меры по устранению опасности.
Симптомы поражения
Негативное влияние ЭМИ на здоровье человека было доказано многочисленными медицинскими исследованиями.
Источник
СанПиН 2971-84. Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты
анитарно-эпидемиологические требования к жилым зданиям и помещениям.
Санитарно-эпидемиологические правила и нормативы,
САНПИН 2.1.2.1002-00
Утверждены
Главным государственным санитарным врачом Российской Федерации,
Первым заместителем Министра здравоохранения Российской Федерации
Г.Г.Онищенко 15 декабря 2000 года
1. Общие положения и область применения
2. Требования к участку и территории жилых зданий при их размещении
3. Требования к жилым зданиям и помещениям общественного назначения, размещаемым в жилых зданиях
4. Требования к отоплению, вентиляции, микроклимату и воздушной среде помещений
5. Требования к естественному и искусственному освещению и инсоляции
6. Требования к уровням шума, вибрации, ультразвука и инфразвука, электрических и электромагнитных полей и ионизирующего излучения в помещениях жилых зданий
6.1. Допустимые уровни шума
Допустимые уровни звукового давления в октавных полосах частот, эквивалентных и максимальных уровней звука проникающего шума в помещения жилых зданий (Таблица 6.1.3.1)
Наименование помещений, территорий
Уровни звукового давления, дБ, в октавных полосах со средне-геометрическими частотами, Гц
Уровни звука La и эквивалентные уровни звука Laэкв, дБА
Источник