Меню

Как рассчитать теплоотдачу оборудования

Как рассчитать теплоотдачу оборудования

Технические расчеты бесплатно и анонимно =)

Технические расчеты бесплатно и анонимно =)

  • Отопление
    • Расчет тепловой нагрузки по укрупненным показателям МДК 4-05.2004
    • Расчет диаметра коллектора
    • Расчет расширительного бака для отопления
    • Расчет количества ступеней теплообменника ГВС
    • Расчет нагрева ГВС
    • Расчет длины компенсаторов температурных удлинений трубопроводов
    • Расчет скорости воды в трубопроводе
    • Разбавление пропилен и этиленгликоля
    • Расчет диаметра балансировочной шайбы
    • Проверка работоспособности элеваторной системы отопления
    • кг/с в м3/ч. Перевод массового расхода среды в объемный.
    • Онлайн замена радиаторов Prado на Purmo
    • Примеры гидравлических расчетов систем отопления
    • Sanext
      • Расчет диаметра и настройки клапана Sanext DPV
      • Расчет этажного коллектора системы отопления Sanext
      • Маркировка РКУ Sanext
      • Замена клапана Danfoss AB-QM на Sanext DS
      • Быстрая замена L и T-образных трубок на трубу Стабил
  • Вентиляция
    • Расчет гравитационного давления
    • Расчет расхода воздуха на удаление теплоизбытков
    • Расчет теплоснабжения приточных установок
    • Расчет осушения помещений по методике Dantherm
    • Расчет эквивалентного диаметра и скорости воздуха в воздуховоде
    • Расчет дымоудаления с естественным побуждением
    • Расчет площади воздуховодов и фасонных частей онлайн
    • Расчет естественной вентиляции онлайн
    • Расчет потерь давления на местных сопротивлениях
    • Расчет воздушного отопления совмещенного с вентиляцией
    • Расчет вентиляции в аккумуляторной
    • Расчет температуры приточного и вытяжного воздуха системы вентиляции
    • Расчет углового коэффициента луча процесса
    • Кратности воздухообмена и температуры воздуха
    • Расчет количества облучателей-рециркуляторов медицинских по Р 3.5.1904-04
  • Кондиционирование
    • Расчет мощности кондиционера по теплопритокам в помещение
    • Расчет теплопритоков от солнечной радиации. Инсоляция помещения.
    • Расчет теплопоступлений от источников искусственного освещения
    • Расчет теплопоступлений от оборудования
    • Расчет теплопоступлений от людей
    • Расчет теплопритоков и влаги от остывающей еды
    • Расчет теплопоступлений от инфильтрации воздуха
    • Расчет полной теплоты из явной теплоты
  • Водоснабжение
    • Расчет сопротивления в трубопроводе ВК
    • Расчет глубины промерзания грунта
    • Расчетные расходы дождевых вод
  • Газоснабжение
    • Технико-экономический расчет тепла и топлива
    • Расчет диаметра газопровода
    • Расчет теплотворной способности энергоносителей
  • Смета
    • Расчет площади окраски металлического профиля
    • Расчет площади окраски чугунных радиаторов
    • Расчет расхода теплоизоляции с учетом коэффициента уплотнения
    • Расчет количества досок из кубометра древесины
    • Примеры смет
      • Пример сметы на авторский надзор
      • Пример сметы на перебазирование техники
      • Пример расчета коэффициента к ФОТ при сверхурочной работе.
      • Пример расчета коэффициента к ФОТ при многосменном режиме работы.
      • Пример расчета коэффициента к ФОТ при вахтовом методе работы.
      • Списание материалов в строительстве. Пример формы отчета.
      • Списание материалов в строительстве. Пример формы ведомости.
  • Разные
    • Конвертер технических величин
    • Проверка показаний теплосчетчика онлайн
    • Расчет категории склада для хранения муки
    • Линейная интерполяция онлайн
    • Онлайн расчет маржинальности и точки безубыточности
    • НДС калькулятор онлайн, расчет %
    • Юнит-экономика онлайн калькулятор
    • Расчет стоимости покупки автомобиля по доходу семьи
    • Расчет стоимости системы учета энергоресурсов
    • Калькулятор технологии домашнего виноделия
    • Закон Ома
    • Расчет фундамента
    • Статьи
      • Нормы
      • Сравнение типов отопительных приборов
      • Настройка AutoCAD
      • Температура воздуха в Краснодаре за 10 лет зимой
      • Сравнение ИП с ООО
  • Вход

Расчет теплопоступлений от оборудования

Калькулятор суммарных теплопритоков в помещение от электрического оборудования

Теплопоступления от эл. оборудования в помещение определяются по общей электрической мощности оборудования с учетом его загрузки, эффективности работы местных отсосов, установленных над ним, и одновременности работы.

Следует отметить, что теплопоступления от эл. оборудования являются доминирующими при определении избытков полной теплоты, так как при работе оборудования образуются избытки влаги вследствие испарения жидкости, например, из варочных котлов горячих цехов предприятий общественного питания.

Суммарные теплопритоки в помещение возможно рассчитать по ссылке:

  • от людей – в зависимости от вида деятельности, пола и температуры воздуха;
  • от остывающей еды – в зависимости от количества посадочных мест и ее теплоемкости;
  • от оборудования – в зависимости от его вида и электрической мощности;
  • от искусственного освещения – по двум вариантам, по площади или по известной эл. мощности;
  • от солнечной радиации – в зависимости от стороны света, размера окон и наличия солнцезащитных устройств;
  • от инфильтрации воздуха – теплопритоки через неплотности строительных конструкций.

Источник



Способы рассчитать тепловыделение: расчёт серверного оборудования

Специальное серверное и телекоммуникационное оборудование располагают в отдельных помещениях, называемых серверными. К их обустройству предъявляются особенные требования. Если грамотно рассчитать тепловыделение для серверной, находящиеся в ней устройства и аппараты будут работать с максимальной эффективностью, а энергозатраты будут минимальными.

Содержание

  1. Организация серверной комнаты
  2. Категория пожароопасности
  3. Необходимая аппаратура
  4. Расчёт тепловыделения
  5. Дополнительные источники тепла

Организация серверной комнаты

Серверные помещения оборудуют в зданиях, где функционирует большое количество техники (например, в офисных центрах). В них устанавливают такие приборы, как элементы бесперебойного питания, распределительные пункты, кроссы, патч-панели, коммуникационные стойки и многое другое. Исходя из количества необходимого оборудования рассчитываются размеры серверной комнаты. Минимально допустимой считается площадь 14 кв. м. В некоторых случаях может использоваться несколько таких комнат.

Требования к оборудованию специального помещения перечислены в стандарте TIA 569. Согласно этому документу, высота потолка в серверной должна достигать 2,5 м. Такая величина обусловлена тем, что большинство стоек для крепления аппаратов имеют высоту 2 м. Для обеспечения эффективного отвода тепла расстояние от их верхней точки до потолка должно быть минимум 0,5 м.

Для обустройства серверной следует выбирать комнаты без окон. Иначе через них в летнее время будет попадать большое количество солнечного тепла, негативно влияющего на работу современной техники.

Множество различных установок, собранных в одном месте, имеют внушительный вес. Поэтому для обеспечения безопасности пол должен выдерживать большую нагрузку (минимум 1200 кг на 1 кв. м.). Чтобы оборудование не вышло из строя из-за действия влаги, потолок требуется покрыть слоем гидроизоляционного материала. Температурный режим следует постоянно поддерживать в диапазоне 18−24 градуса, влажность — на уровне 30−50%

Источники электрических помех необходимо удалить от серверного помещения. Максимальная напряжённость в нём может составлять не более 3 В на 1 м.

В комнате обязательно наличие телекоммуникационной шины, выполняющей роль основного заземлителя. К ней присоединяют заземляющие проводники металлических кабелей, приборов и прочих конструкций. Освещение запитывают от разных распределительных электрощитов, световые приборы размещают на потолке, выключатели для них монтируют на высоте 1,5 м от пола.

Обязательным требованием к серверной является постоянное поддержание чистоты и отсутствие пожароопасных предметов. Доступ в неё должен быть строго ограничен, двери — закрыты на замок, ключи от которого может иметь собственник здания и лицо, ответственное за обслуживание помещения.

Категория пожароопасности

Сосредоточение большого числа аппаратуры в комнате увеличивает риск возникновения короткого замыкания, которое может спровоцировать пожар. Чтобы предотвратить эту ситуацию, необходимо правильно рассчитать категорию пожароопасности помещения. При расчётах следует учитывать особенности материалов, используемых в комнате, её площадь, высоту потолка, состояние вентиляционной системы и наличие полок, стеллажей.

На основании этих факторов выделяют несколько разновидностей помещений. Они имеют разную степень пожароопасности.

Повышенная взрывопожароопасность (категория А) присваивается помещениям, где находятся горючие газы, легковоспламеняющиеся жидкости с температурой вспышки менее 28 градусов. Из-за большой концентрации таких веществ могут образовываться взрывоопасные смеси. При их возгорании расчётное избыточное давление взрыва поднимается выше 5 кПа.

В категорию Б попадают комнаты с горючими волокнами и жидкостями, температура воспламенения которых превышает 28 градусов. Их использование приводит к образованию взрывоопасных паров и пылевоздушных смесей. Если такие смеси загорятся, давление взрыва превысит 5 кПа.

К группе В относят помещения, в которых имеются горючие и трудногорючие жидкости, твёрдые воспламеняющиеся составы. При взаимодействии друг с другом, при соединении с водой или кислородом такие вещества не взрываются, а только горят.

Эта категория делится на 4 подгруппы. Для каждой из них определён диапазон удельной пожарной нагрузки:

  • В1 — более 2200 МДж/м2.
  • В2 — 1401 — 2200 МДж/м2.
  • В3 — 181 — 1400 МДж/м2.
  • В4 — 1 до 180 МДж/м2.

В комнатах группы В может быть несколько участков, на которых пожарная нагрузка не превышает установленных значений. Подгруппа В4 предусматривает, что расстояние между этими участками не должно превосходить предельно-допустимых значений.

Группа Г подразумевает умеренную пожароопасность и присваивается помещениям с негорючими материалами. При их раскалении и расплавлении выделяется лучистое тепло, искры и пламя. Жидкости и твёрдые компоненты, образующиеся в этом случае, сжигаются или утилизируются как топливо.

Если в комнате используются негорючие вещества в холодном состоянии, ей присваивается категория Д. Она характеризуется максимально низким уровнем пожароопасности.

Необходимая аппаратура

Для серверных комнат выбирают современное оборудование, изготовленное из устойчивых к воспламенению пожаробезопасных деталей. Устанавливают такое оборудование на специальных стойках, имеющих стандартную ширину 19 дюймов, глубину 600, 800 или 900 мм. В дополнение к ней прилагается специальный корпус, для фиксации которого стойка оснащается отверстиями. Промежуток между ними составляет 44,5 мм и называется юнитом. Высота стойки обозначается юнитами.

Читайте также:  Торговый дом строительное оборудование москва

Телекоммуникационная стойка бывает обычной или со стеклянной дверью. Второй вариант более эстетичен и удобен, т. к. позволяет дополнительно защитить закреплённую технику. Более современные модели комплектуются охлаждающими системами (от обычных кондиционеров до автономных сплит-систем), необходимыми для обеспечения оптимального режима температуры. Также в них предусмотрены индикаторы. Стойки, оснащённые всеми необходимыми элементами, называют серверными шкафами.

Залогом эффективной работы техники является защита от перепадов напряжения в сети. Она создаётся с помощью источника бесперебойного питания (ИБП). Существуют разные типы таких устройств:

    Резервного типа. Содержит автоматический коммутатор, который обеспечивает работу прибора от электросети и аккумуляторных батарей. Такой ИБП прост в эксплуатации, имеет небольшую мощность, стоит недорого.

Для серверных комнат лучше всего подходят источники бесперебойного питания On-Line, но из-за дороговизны их часто заменяют на ИБП линейно-интерактивного типа. Мощность такого устройства должна составлять 5−6 кВА.

Расчёт тепловыделения

Укомплектовав помещение необходимым оборудованием, следует провести расчёт тепловыделения по потребляемой мощности. Тепловую мощность измеряют в БТЕ (Британская термическая единица). 1 Вт составляет 3.412 БТЕ/час. К примеру, тепловыделение компьютера для кондиционирования мощностью 400 Вт будет равно 1364,8 БТЕ/час.

Посчитать суммарное тепловыделение серверного оборудования можно несколькими способами. Первый — сложение показателей тепловыделения каждого прибора — является не самым точным.

При втором варианте подсчётов во внимание берут не только количество тепла, выделяемого оборудованием, но и количество персонала, находящегося в серверной, и количество тепла, проходящего через стены, потолок. Чтобы узнать, сколько тепловой энергии пропускают ограждающие строительные конструкции, требуется воспользоваться формулой Q = S х h х q / 1000, в которой:

  • s — площадь серверной комнаты.
  • h — высота потолков.
  • q — поправочный коэффициент. Величина является табличной и измеряется в Вт/м3. Считается, что удельный коэффициент для серверной комнаты такой же, как для помещения без окон (30 Вт/м3).

В серверной обязательно должна быть налажена вентиляция. Поскольку в ней отсутствуют окна, организовать эффективный естественный приток воздуха невозможно. Помещение приходится оснащать климатическими системами. Именно они выделяют в атмосферу значительные объёмы тепла, вырабатываемого компрессорами и вентиляторами. Чтобы уменьшить тепловую нагрузку на помещение, нужно обеспечить отвод этого тепла наружу.

Кондиционер в комнате должен не только хорошо охлаждать воздушные потоки, но и увлажнять их. В серверной влажность должна находиться в диапазоне 30−50% и меняться со скоростью 6% в час. Конденсация влаги не допускается.

В небольших комнатах и серверных шкафах во время работы кондиционера не происходит смешивание холодного и горячего воздуха, поэтому влага не конденсируется.

Чтобы преодолеть рециркуляцию обратного воздуха из прибора в крупных помещениях, система кондиционирования должна быть настроена на подачу воздуха более низкой температуры. Если холодный поток попадаёт напрямую в кондиционер, влажность в атмосфере резко снизится, потребуется организовать дополнительное увлажнение.

Дополнительные источники тепла

Принимаясь за расчёт тепловыделения серверной, следует учитывать, что, кроме основных источников тепла: телекоммуникационных устройств, источников бесперебойного питания и системы кондиционирования, в комнате имеются дополнительные источники тепловой энергии.

К ним относятся осветительные приборы. Подходящими считаются лампы накаливания и галогенные светильники, не дающие электромагнитных помех. Их число должно быть таким, чтобы уровень освещённости достигал минимум 500 люкс.

Нельзя забывать, что люди, обеспечивающие работу серверных приборов, также выделяют тепло. Известно, что один человек при движении выделяет около 350 Вт энергии. Её нужно учитывать при подсчёте общего тепловыделения.

Источник

Расчет теплового баланса в электротехническом шкафу

Расчет теплового баланса в электротехническом шкафу17.07.2017

Для продолжительной и бесперебойной работы электронного оборудования внутри электротехнического шкафа следует обеспечить надлежащий микроклимат внутри него, то есть постоянно поддерживать тепловой баланс.

Учитывая возможные расходы электроэнергии по поддержанию климата, температура воздуха в +35 о С будет идеальным значением для устройств внутри шкафа. Ниже рассмотрим расчет мощности климатического оборудования, в том числе и на типичных примерах.

Общее уравнение для расчета баланса температуры выглядит так:

Pk = PvPr [Ватт], где

Pk [Ватт] — мощность устройства охлаждения/нагрева.

Pv [Ватт] — потеря тепла от рассеивания.

Pr [Ватт] — теплоизлучение/теплоотдача.

Потеря тепла от рассеивания — тепловая энергия, образующаяся внутри шкафа за счет нагревания работающих приборов.

Чтобы узнать данную величину, следует заглянуть в технические характеристики установленного оборудования, в некоторых из них дано значение тепловых потерь. Для остальных устройств следует принять потери, составляющие примерно 10% от общей мощности потребления (её также можно найти в технических характеристиках). Нужно знать КПД и степень нагрузки для более точного расчета тепловой потери отдельного электротехнического компонента.

К примеру, если КПД частотного преобразователя составляет 95%, то условно 5% от его мощности потребления уходит на нагрев. Если же во время работы этот преобразователь работает на 70% от своего номинала, то мощность его тепловых потерь составит

70 · 5 / 100 % = 3,5 %

Таким образом, тепловая мощность шкафа будет равна сумме тепловых потерь всех устройств установленных в нём.

Теплоизлучение/телоотдача — теплоотдача через корпус электротехнического шкафа (не учитывая коэффициент изоляции). Теплоотдача шкафа рассчитывается по формуле ниже и измеряется в Ваттах:

Pr = k · A · ∆T [Ватт], где

k [Вт/м 2 K] — коэффициент теплоотдачи.

A [м 2 ] — эффективная площадь электротехнического шкафа.

∆T [K] — разница температур воздуха внутри и снаружи шкафа.

Коэффициент теплоотдачи — мощность излучения на 1 м2 площади поверхности. Является постоянной величиной и зависит от материала:

Коэффициент теплоотдачи

Эффективная площадь поверхности электрошкафа измеряется в соответствии со спецификациями VDE 0660, часть 500. Расчет зависит от расположения шкафа:

Один шкаф, свободно стоящий A = 1,8·H · (W + D) + 1,4 · W · D

Один шкаф, монтируемый на стену A = 1,4 · W · (H + D) + 1,8 · D · H

Крайний шкаф свободно стоящего ряда A = 1,4 · D · (H + W) + 1,8 · W · H

Крайний шкаф в ряду, монтируемом на стену A = 1,4 · H · (W + D) + 1,4 · W · D

Не крайний шкаф свободно стоящего ряда A = 1,8 · W · H + 1,4 · W · D + D · H

Не крайний шкаф в ряду, монтируемом на стену A = 1,4 · W · (H + D) + D · H

Не крайний шкаф в ряду, монтируемом на стену, под козырьком A = 1,4 · W · H + 0,7 · W · D + D · H

где W — ширина шкафа, H — высота шкафа, D — глубина шкафа, измеряемые в метрах.

Разницу температур воздуха внутри и снаружи шкафа принято измерять в градусах Кельвина (разница температур в Кельвинах равна разнице температур в Цельсиях).

Разницу находят, вычитая из температуры внутри шкафа температуру окружающей среды:

∆T = Ti – Ta, где

Ti — температуры внутри шкафа.

Ta — температура окружающей среды.

Если температура окружающей среды отрицательная, к примеру, Ta = -10 о С, а требуемая внутри шкафа Ti = +35 о С, то

∆T = 35 — (-10) = 35 + 10 = 45 о K

Подставив в общее уравнение формулу по определению теплоотдачи шкафа, общее уравнение теплового баланса примет вид:

Pk = Pv – k · A · ∆T [Ватт]

Положительная величина полученной мощности указывает на то, что следует применять охлаждение, а отрицательная — нагрев.

РАССМОТРИМ ПРИМЕР:

Необходимо установить тепловой баланс отдельно стоящего электрошкафа с размерами 2000x800x600мм, изготовленного из стали, имеющего степень защиты не ниже IP54. Потери тепловой энергии всех компонентов в шкафу составляют Pv = 550 Вт.

В разное время года температура внешней среды может значительно меняться, поэтому рассмотрим два случая.

Рассчитаем поддержание температуры внутри шкафа Ti = +35 о С при внешней температуре

в зимний период: Ta = -30 о С

в летний период: Ta = +40 о С

1. Рассчитаем эффективную площадь электрошкафа.

Поскольку площадь измеряется в м 2 , то его размеры следует перевести в метры.

A = 1,8·H · (W + D) + 1,4 · W · D = 1,8 · 2000/1000 · (800 + 600)/1000 + 1,4 · 800/1000 · 600/1000 = 5,712 м 2

Читайте также:  Шлагбаум это сооружение или оборудование

в зимний период: ∆T = Ti – Ta = 35 – (-30) = 65 о K

в летний период: ∆T = Ti – Ta = 35 – 40 = -5 о K

в зимний период: Pk = Pv – k · A · ∆T = 550 – 5.5 · 5.712 · 65 = -1492 Вт.

в летний период: Pk = Pv – k · A · ∆T = 550 – 5.5 · 5.712 · (-5) = 707 Вт.

Для надежной работы устройств по поддержанию климата, их обычно «недогружают» по мощности около 10%, поэтому к расчетам добавляют порядка 10%.

Таким образом, для достижения теплового баланса в зимний период следует использовать нагреватель с мощностью 1600 — 1650 Вт (при условии постоянной работы оборудования внутри шкафа). В тёплый же период следует отводить тепло мощностью порядка 750-770 Вт.

Нагрев можно осуществлять, комбинируя несколько нагревателей, главное набрать в сумме нужную мощность нагрева. Предпочтительнее брать нагреватели с вентилятором, так как они обеспечивают лучшее распределения тепла внутри шкафа за счет принудительной конвекции. Для управления работой нагревателей применяются термостаты с нормально замкнутым контактом, настроенные на температуру срабатывания равную температуре поддержания внутри шкафа.

Для охлаждения применяются различные устройства: вентиляторы с фильтром, теплообменники воздух/воздух, кондиционеры, работающие по принципу теплового насоса, теплообменники воздух/вода, чиллеры. Конкретное применение того или иного устройства обусловлено различными факторами: разницей температур ∆T, требуемой степенью защиты IP и т.д.

В нашем примере в тёплый период ∆T = Ti – Ta = 35 – 40 = -5 о K. Мы получили отрицательную разницу температур, а это значит, что применить вентиляторы с фильтром не представляется возможным. Для использования вентиляторов с фильтром и теплообменников воздух/воздух необходимо, чтобы ∆T была больше или равна 5 о K. То есть чтобы температура окружающей среды была ниже требуемой в шкафу не менее чем на 5 о K (разница температур в Кельвинах равна разнице температур в Цельсиях).

РАССМОТРИМ ДРУГОЙ ПРИМЕР:

Необходимо с помощью расчетов подобрать устройства поддержания микроклимата в шкафу, установленном в помещении. Шкаф изготовлен из стали, степень защиты не ниже IP54, его габариты 2000x800x600мм. Потери тепловой энергии всех приборов известны и составляют Pv = 550 Вт.

Требуется обеспечить внутреннюю температуру в холодный период не ниже Ti = +15 о С, а в летний – не выше Ti = +35 о С.

Внешняя температура равна: в зимний период Ta = 0 о С, в летний период Ta = +30 о С.

Необходимо выполнить следующие действия:

Источник

Расчет тепловыделений в производственных

а) Тепловыделения от нагретых поверхностей оборудования определяются по формуле

где F — теплоизлучающая поверхность, м 2 ;

К 1 — коэффициент теплообмена, кал/м 2 ×ч×°С,

для поверхности нагретых предметов К 1 = 8,4 [3];

t ПОВ — температура наружной поверхности оборудования,°С;

t B — температура воздуха в помещении,°С;

б) Тепловыделения от остывающих продуктов и материалов определяются по формуле

где M M — количество остывающего материала, кг/ч;

С M — теплоемкость материала, ккал/кг×°С;

t НАЧ , t КОН — начальная и конечная температуры,°С,

в) Тепловыделения от электрооборудования, потребляемого электроэнергию, определяется по формуле

где N УСТ -установочная мощность оборудования, кВт;

К 1 — коэффициент использования установочной мощности

K 2 — коэффициент одновременности работы оборудования,

К 2 = 0,8 ÷ 1,0 (чаще принимается равным 1);

860 — тепловой эквивалент 1кВт.ч, т.е. тепло, эквивалентное 1кВт.ч электрической энергии.

г) Тепловыделения от искусственного освещения определяются по формуле

где N УСТ — суммарная установочная мощность осветительных

K 1 — коэффициент способа установки источников света (для открытых потолочных подвесных светильников К 1 = 1; для светильников с лампами накаливания, закрытых матовыми стеклами К 1 = 0,7; для светильников, встроенных в подвесной потолок К 1 = 0,15 ÷ 0,45 — наименьшее значение соответствует способу установки, при котором часть тепла отводится через вентиляционные панели в потолочном перекрытии, наибольшее — когда все тепло от светильников поступает в помещение. При отсутствии данных по проектной мощности осветительных установок удельные тепловыделения от освещения рассчитываются на: 1 люкс освещенности и принимаются равными:

при использовании ламп накаливания – 0,15 ÷ 0,2 ккал/ч на 1 м 2 площади помещения;

при использовании люминесцентных ламп — 0,05 ккал/ч на 1 м 2 площади пола.

д) Тепловыделения от электродвигателей, встроенных в оборудование, рассчитывается по формуле

где N o б — установочная мощность оборудования (электродвигателей, кВт);

К 1 — коэффициент загрузки электродвигателей (отношение средней

мощности электродвигателя к номинальной) К 1 = 0,5 ÷ 0,8;

K 2 — коэффициент одновременности работы оборудования

К 3 — коэффициент тепловыделения оборудования с учетом уноса

теплоты из помещения с материалами, водой, воздухом и т.д.

(К 3 = 0,1 ÷ 1,0); для насосов и вентиляторов К 3 = 0,1 ÷ 0,3;

для металлорежущих станков К 3 = 1,0.

е) Тепловыделения от электродвигателей, установленных в помещении, определяются по формуле

где N эл.двиг — мощность электродвигателей, кВт;

К 1 , .K 2 — см. предыдущую формулу;

— КПД электродвигателя.

ж) Количество тепла, выделяемого людьми (прил.3), зависит от метеорологических условий в помещении и степени тяжести выполняемых работ. Различают тепловыделения от людей по явному теплу, вследствие теплообмена поверхности тела с окружающим воздухом q я п , и тепловыделения по полному теплу с учетом скрытого тепла испарения водяных паров, выделяемых человеком q п я ,

Общее количество тепла, выделяемого людьми, определяется по формуле

Q я п= q я п × n , ккал/ч; (7)

Q п я, = q п я,× n , ккал/ч; (8)

где q я п , q п я — тепловыделения одним человеком по явному и

полному теплу ккал/ч;

n — число людей в помещении.

Количество явного тепла Q я п учитывается при определении необходимого воздухообмена общеобменной вентиляцией, Q п я учитывается при расчетах тепловой нагрузки на кондиционер.

з) Тепловой поток, поступающий в помещение от солнечной радиации, определяется по формуле

Q солн =860 × F ост × q рад × А ост ×K × 10 -3 , ккал/ч (9)

где F ост — поверхность остекления, м 2 ;

q рад — количество тепла, поступающего в помещение через 1 м 2

остекленной поверхности, Вт/м 2 (прил. 4);

а ост — коэффициент, зависящий от количества рядов стекол

(двойное остекление — 1,15, одинарное — 1,45);

К — коэффициент, учитывающий загрязнение остекления

и) Тепловой поток, выделяемый поверхностью нагретой жидкости, определяется по формуле

Q ж = F ж × а × ( t ж — t B), ккал/ч, (10)

где F ж — площадь нагретой поверхности жидкости, м 2 ;

а — коэффициент теплоотдачи от поверхности к воздуху

поме­щения, ккал/ч×м 2 ×°С, значения а определяются по формуле

где V — скорость движения воздуха над поверхностью

t ж — температура жидкости;

t B — температура воздуха в помещении.

Источник

Как посчитать тепловыделение оборудования от мощности

Необходимо знать каждому.

Как выбрать сплит систему — в наше время очень острый вопрос и далеко не каждая организация может похвастаться специалистами по подбору климатических систем и систем кондиционирования, с бытовыми настенными сплит системами дело обстоит так же. Полагаясь на свои предпочтения либо советы друзей и неквалифицированных менеджеров слушая и говоря: «Да там кухня 8 квадратов, хрущевка обычная, у моего друга Семерка стоит — всю квартиру охлаждает без проблем», вы можете купить сплит систему и останетесь очень не довольны результатами ее производительности, энергопотребления и долговечности, обращайтесь к специалистам по расчету теплопритоков и точному подбору сплит систем и кондиционеров на ваши нужды и условия.

Расчёт тепловыделения

Укомплектовав помещение необходимым оборудованием, следует провести расчёт тепловыделения по потребляемой мощности. Тепловую мощность измеряют в БТЕ (Британская термическая единица). 1 Вт составляет 3.412 БТЕ/час. К примеру, тепловыделение компьютера для кондиционирования мощностью 400 Вт будет равно 1364,8 БТЕ/час.

Посчитать суммарное тепловыделение серверного оборудования можно несколькими способами. Первый — сложение показателей тепловыделения каждого прибора — является не самым точным.

При втором варианте подсчётов во внимание берут не только количество тепла, выделяемого оборудованием, но и количество персонала, находящегося в серверной, и количество тепла, проходящего через стены, потолок. Чтобы узнать, сколько тепловой энергии пропускают ограждающие строительные конструкции, требуется воспользоваться формулой Q = S х h х q / 1000, в которой:

  • s — площадь серверной комнаты.
  • h — высота потолков.
  • q — поправочный коэффициент. Величина является табличной и измеряется в Вт/м3. Считается, что удельный коэффициент для серверной комнаты такой же, как для помещения без окон (30 Вт/м3).
Читайте также:  Фрезерное оборудование с чпу это

В серверной обязательно должна быть налажена вентиляция. Поскольку в ней отсутствуют окна, организовать эффективный естественный приток воздуха невозможно. Помещение приходится оснащать климатическими системами. Именно они выделяют в атмосферу значительные объёмы тепла, вырабатываемого компрессорами и вентиляторами. Чтобы уменьшить тепловую нагрузку на помещение, нужно обеспечить отвод этого тепла наружу.

Кондиционер в комнате должен не только хорошо охлаждать воздушные потоки, но и увлажнять их. В серверной влажность должна находиться в диапазоне 30−50% и меняться со скоростью 6% в час. Конденсация влаги не допускается.

В небольших комнатах и серверных шкафах во время работы кондиционера не происходит смешивание холодного и горячего воздуха, поэтому влага не конденсируется.

Чтобы преодолеть рециркуляцию обратного воздуха из прибора в крупных помещениях, система кондиционирования должна быть настроена на подачу воздуха более низкой температуры. Если холодный поток попадаёт напрямую в кондиционер, влажность в атмосфере резко снизится, потребуется организовать дополнительное увлажнение.

Выбрать мощность сплит системы по маркировке.

Общепринятая Европейская система классификации мощности по BTU: 7 000 BTU , 9 000 BTU, 12 000 BTU и т. д. BTU (БТЕ) — British Thermal Unit или Британская тепловая единица, 1000(БТЕ/час=293 Вт). Большинство производителей пользуются Британской маркировкой для удобства подбора мощности, так как первые кондиционеры стали использовать в Европе и США, однако сплит системы фирм Daikin, Mitsubishi, Kentatsu, Chigo и многие другие маркируют свои сплит системы по мощности в киловаттах, например Daikin ATXN25MB и цифра 25 означает номинальную холодопроизводительность в 2,5 кВт, что характеризует мощность кондиционера в 9 000 BTU или 9-ка.

Категория пожароопасности

Сосредоточение большого числа аппаратуры в комнате увеличивает риск возникновения короткого замыкания, которое может спровоцировать пожар. Чтобы предотвратить эту ситуацию, необходимо правильно рассчитать категорию пожароопасности помещения. При расчётах следует учитывать особенности материалов, используемых в комнате, её площадь, высоту потолка, состояние вентиляционной системы и наличие полок, стеллажей.

На основании этих факторов выделяют несколько разновидностей помещений. Они имеют разную степень пожароопасности.

Повышенная взрывопожароопасность (категория А) присваивается помещениям, где находятся горючие газы, легковоспламеняющиеся жидкости с температурой вспышки менее 28 градусов. Из-за большой концентрации таких веществ могут образовываться взрывоопасные смеси. При их возгорании расчётное избыточное давление взрыва поднимается выше 5 кПа.

В категорию Б попадают комнаты с горючими волокнами и жидкостями, температура воспламенения которых превышает 28 градусов. Их использование приводит к образованию взрывоопасных паров и пылевоздушных смесей. Если такие смеси загорятся, давление взрыва превысит 5 кПа.

К группе В относят помещения, в которых имеются горючие и трудногорючие жидкости, твёрдые воспламеняющиеся составы. При взаимодействии друг с другом, при соединении с водой или кислородом такие вещества не взрываются, а только горят.

Эта категория делится на 4 подгруппы. Для каждой из них определён диапазон удельной пожарной нагрузки:

  • В1 — более 2200 МДж/м2.
  • В2 — 1401 — 2200 МДж/м2.
  • В3 — 181 — 1400 МДж/м2.
  • В4 — 1 до 180 МДж/м2.

В комнатах группы В может быть несколько участков, на которых пожарная нагрузка не превышает установленных значений. Подгруппа В4 предусматривает, что расстояние между этими участками не должно превосходить предельно-допустимых значений.

Как детально рассчитать мощность сплит системы для своей комнаты или помещения.

Внешние теплопритоки.

Расчет проникающей солнечной радиации через оконный проем с учетом расположения сооружения относительно сторон света.

где qокн — удельная тепловая мощность от солнечной радиации в зависимости от ориентации окна Вт/м2

Ориентация окна Северо Восток Восток Юго Восток Юг Юго Запад Запад Северо Запад Север
q, Вт/м2 190 250 240 240 350 470 370

Fокн — площадь остекления окна, м2

k — коэффициент солнцезащитных элемент

b> Отсутствие защиты Жалюзи Шторы Внешний навес
k 1 0,5 0,4 0,3

Теплоприктоки от нагрева защитного сооружения:

qзс — удельная тепловая мощность теплопередачи защитного сооружения, Вт/м2

Fзс — площадь защитного сооружения, м2

Для постоянно открытой двери теплоприток принимают за 300 Вт

Защитное сооружение q, Вт/м2
Внешняя стена легкой конструкции (север) 30
Внешняя стена легкой конструкции 60
Внешняя стена тяжелой конструкции (север) 20
Внешняя стена тяжелой конструкции 30
Внутренняя стена 30
Крыша без утепления 60
Крыша с утеплением 25
Потолок 10
Пол 10

Внутренние теплопритоки.

n — количество людей в зависимости от физической активности

qч — количество тепловыделения одного человека

Физическая активность q, Вт
Отдых 80
Легкая работа 125
Работа средней тяжести 170
Тяжелая работа, занятие спортом 250

4. Тепловыделение от электрооборудования

m — количество единиц оборудования

Nэ — электрическая мощность еденицы оборудования, Вт

i — коэффициент превращения электрической энергии в тепловую

Оборудование i
Лампы накаливания 0,9
Лампы люминесцентные 0,4
Электродвигатели 0,3
Автономные холодильники и витрины 1

Для компьютера и оргтехники теплоприток принимают 300 Вт

Организация серверной комнаты

Серверные помещения оборудуют в зданиях, где функционирует большое количество техники (например, в офисных центрах). В них устанавливают такие приборы, как элементы бесперебойного питания, распределительные пункты, кроссы, патч-панели, коммуникационные стойки и многое другое. Исходя из количества необходимого оборудования рассчитываются размеры серверной комнаты. Минимально допустимой считается площадь 14 кв. м. В некоторых случаях может использоваться несколько таких комнат.

Требования к оборудованию специального помещения перечислены в стандарте TIA 569. Согласно этому документу, высота потолка в серверной должна достигать 2,5 м. Такая величина обусловлена тем, что большинство стоек для крепления аппаратов имеют высоту 2 м. Для обеспечения эффективного отвода тепла расстояние от их верхней точки до потолка должно быть минимум 0,5 м.

Для обустройства серверной следует выбирать комнаты без окон. Иначе через них в летнее время будет попадать большое количество солнечного тепла, негативно влияющего на работу современной техники.

Множество различных установок, собранных в одном месте, имеют внушительный вес. Поэтому для обеспечения безопасности пол должен выдерживать большую нагрузку (минимум 1200 кг на 1 кв. м.). Чтобы оборудование не вышло из строя из-за действия влаги, потолок требуется покрыть слоем гидроизоляционного материала. Температурный режим следует постоянно поддерживать в диапазоне 18−24 градуса, влажность — на уровне 30−50%

Источники электрических помех необходимо удалить от серверного помещения. Максимальная напряжённость в нём может составлять не более 3 В на 1 м.

В комнате обязательно наличие телекоммуникационной шины, выполняющей роль основного заземлителя. К ней присоединяют заземляющие проводники металлических кабелей, приборов и прочих конструкций. Освещение запитывают от разных распределительных электрощитов, световые приборы размещают на потолке, выключатели для них монтируют на высоте 1,5 м от пола.

Обязательным требованием к серверной является постоянное поддержание чистоты и отсутствие пожароопасных предметов. Доступ в неё должен быть строго ограничен, двери — закрыты на замок, ключи от которого может иметь собственник здания и лицо, ответственное за обслуживание помещения.

Кондиционирование серверных с помощью сплит-систем.

Сплит-системы подойдут для кондиционирования небольших серверных помещений. Их стоимость значительно ниже, чем у прецизионных кондиционеров. Если в серверной не требуется поддерживать температуру с точностью до 1гр.C, то установка такой системы позволит сэкономить средства и место в помещении.

В основном в серверных комнатах используют настенные, колонные, потолочные и канальные кондиционеры высокого качества. Канальные кондиционеры монтируют под фальш-пол или подвесной потолок. При чем преимущество отдается именно фальш-полу. В этом случае холодный воздух подается снизу и более равномерно распределяется в помещении.

Обычные кондиционеры не могут работать при пониженной температуре воздуха на улице. В таких условиях резко падает давление конденсации, в результате жидкий хладагент может попадать в картер компрессора. Также из картера в систему может выбрасываться масло. Все это ведет к обмерзанию внутреннего блока кондиционера, снижению его производительности и быстрому выходу компрессора из строя. Кроме того, если дренажная система выходит на улицу, в сильные морозы возникают проблемы с отводом влаги из системы кондиционирования. Этот недостаток систем кондиционирования воздуха решается установкой дополнительного оборудования — устройства зимнего пуска.

Pk = Pv – Pr [Ватт], где

Pk [Ватт] — мощность устройства охлаждения/нагрева.

Источник