Меню

Как проводится стерилизация ферментационного оборудования



Стерилизация ферментеров и способы предотвращения микробной концентрации.

При подготовке ферментера к работе и в процессе его эксплуатации необходимо, чтобы при внесении компонентов среды и отбора проб не нарушалась стерильность и не происходило заражение ферментера посторонними микроорганизмами из внешней среды. Во избежании этого большинство лабораторных ферментеров оснащено трубной для отбора проб.

Большинство лабораторных ферментеров сконструировано таким образом, что колба, в которой осуществляется культивирование микроорганизмов вместе со всей необходимой оснасткой (рН-эоектрод, датчик растворенного кислорода, щелочи, кислоты или отбора проб) снимается со статины или основания и может быть помещена в автоклав. В таких случаях питательная среда заливается в чистую емкость (за исключением тех компонентов, которые не выдерживают стерилизации автоклавированием), монтируется вся необходимая оснастка и колба стерилизуется вместе с питательной средой. После стерилизации и охлаждения питательной среды, колба устанавливается на станину, подключается все необходимое оборудование, вносится расплодка или посевной материал (обычно это молодая 12-16 часовая культура микроорганизма к количестве около 2-5% от объема питательной среды в ферментере) и начинают процесс культивирования по данному режиму.

Промышленные ферментеры большой емкости стерилизуют путем их нагревания вместе с питательной средой под давлением, т.е. создают емкости условия, аналогичные таковым в автоклаве.

Типы ферментационных аппаратов, применяемых в анаэробных и аэробных процессах ферментации (поверхностное культивирование).

Аппараты для анаэробных процессов достаточно просты и применяются в процессах конверсии растительного сырья, в том числе растительных отходов, а также различных промышленных отходов. При метановом брожении для получения биогаза, а также в ряде других процессов (получение ацетона, шампанских вин) используют ферментационные аппараты (метанотенки). Эти аппараты имеют различную конструкцию (от простой выгребной ямы до сложных металлических конструкций или железобетонных сооружений) и объемы (от нескольких до сотен кубометров). Метановые установки оборудованы системой подачи сырья, системой теплообменных труб для стабилизации температуры, несложным перемешивающим устройством для гомогенного распределения сырья и биомассы продуцента, газовым колпаком и устройством переменного объема (газгольдер) для сбора образуемого биогаза.

Конструкция аппаратов для аэробной ферментации определяется типом ферментации и сырья. Аппараты для аэробной поверхностной ферментации, широко применяемые для производства органических кислот и ферментов, достаточно просты по конструкции и, соответственно, подразделяются на жидкофазные и твердофазные. Поверхностная жидкофазная ферментация протекает в так называемых бродильных вентилируемых камерах, в которых на стеллажах размещены плоские металлические кюветы. В кюветы наливают жидкую питательную среду, высота слоя составляет 80–150 мм, затем с потоком подаваемого воздуха среду инокулируют спорами продуцента. В камере стабилизируется влажность, температура и скорость подачи воздуха. После завершения процесса культуральная жидкость сливается из кювет через вмонтированные в днища штуцера и поступает на обработку.

При твердофазной ферментациипроцесс также протекает в вентилируемых камерах, но вместо кювет на стеллажах размещают лотки, в которые насыпают сыпучую твердую среду слоем 10–15 мм. Для лучшей аэрации среды подаваемый в камеру воздух проходит через перфорированное днище лотков.

Глубинное, гомогенное проточное и периодическое культивирование. Особенности процессов.

При глубинном культивировании микроорганизмы развиваются во всем объеме жидкой питательной среды. Так как подавляющее большинство продуцентов ферментов — строгие аэробы, среду интенсивно аэрируют. В микроорганизмах протекают два связанных процесса — синтез биомассы и синтез ферментов.

Для глубинного культивирования используют жидкие среды, содержащие твердые компоненты. При работе с комплексными средами, основанными на естественном сырье с добавлением отрубей, ростков, кукурузного жмыха, глютена, свекловичного жома, спиртовой барды, следят за тем, чтобы не было крупных комочков, так как они затрудняют стерилизацию и могут привести к закупорке коммуникаций. Поэтому перед смешением твердых компонентов необходимо проводить их просеивание или грубую фильтрацию (например, зерно-картофельной барды).

Жидкую часть питательной среды (воду или фильтрат барды) обогащают питательными солями, гидролизатами белков, аминокислотами, источниками витаминов, различными углеводами. Содержание сухих веществ в жидких средах может колебаться от 1,5 до 20 % в зависимости от продуцента и принятого режима культивирования.

Для засева производственной питательной среды при глубинном культивировании посевной материал готовят глубинным или поверхностным способом. Вид посевного материала зависит от продуцента: для грибов это вегетативная мицелиальная масса или спороносящая поверхностная, для бактерий — молодая растущая культура на начальной стадии спорообразования.

Посевной материал получают постадийным увеличением массы культуры продуцента. При небольшой производительности цеха это сводится к одной или двум операциям, а для заводов большой производительности представляет собой многоступенчатый процесс.

Культивирование на всех стадиях должно проводиться при оптимальной температуре, аэрации и строго определенное время.

Аппараты для аэробной глубинной ферментации наиболее сложны как конструкционно, так и с точки зрения их эксплуатации. Главная задача, возникающая при их конструировании, – обеспечение высокой интенсивности массо- и энергообмена клеток со средой. Массообмен определяется транспортом (переносом) кислорода и других биогенных элементов из среды в микробную клетку и отводом из нее продуктов обмена.

Сущность периодического способа заключается в том, что весь объем питательной среды загружают в аппарат сразу, добавляют культуру микроорганизмов и при оптимальных условиях ведут процесс до тех пор, пока не накопится нужное количество биомассы (например, при выращивании чистой культуры дрожжей, бактерий; в производстве хлебопекарных дрожжей) или продуктов жизнедеятельности микроорганизмов — метаболитов (например, спирта).

При периодическом культивировании изменяется состав среды (уменьшается концентрация питательных веществ и увеличивается количество метаболитов); скорость роста; морфологические и физиологические свойства культуры. К тому же возникают технологические трудности __ циклический ход операций, сменные технологические режимы, что затрудняет контроль и автоматизацию процесса. Эффективность данного способа низкая (70% времени приходится на непроизводительные стадии __ лаг-фазу и фазу отмирания).

Эти недостатки устраняются применением непрерывных (проточных) способов культивирования. Непрерывное = проточное (синоним)

Данные методы характеризуются непрерывным поступлением в ферментатор свежей питательной среды и непрерывным оттоком готовой культуральной жидкости вместе с клетками введенной культуры микроорганизма.

При непрерывном культивировании можно задержать культуру на логарифмической стадии роста (или любой другой), установки могут длительно работать без остановки на дезинфекцию, время производства сокращается, процесс легче автоматизировать.

Различают гомогенно- и гетерогенно-непрерывное культивирование.

Гомогенно-непрерывный способ отличается интенсивным перемешиванием содержимого в ферментаторе, благодаря этому все параметры в любой точке аппарата и в вытекающей из него среде одинаковы.

Гетерогенно-непрерывный способ характеризуется незначительным перемешиванием среды или полным его отсутствием. При этом состав среды в любой точке аппарата различен, однако показатели системы в целом не изменяются во времени.

Гомогенные методы культивирования чаще всего используют для накопления биомассы микроорганизмов, гетерогенные — для проведения собственно процесса брожения.

Дата добавления: 2018-08-06 ; просмотров: 779 ; Мы поможем в написании вашей работы!

Источник

ОСОБЕННОСТИ КОНСТРУИРОВАНИЯ И РАБОТЫ ФЕРМЕНТАЦИОННОГО ОБОРУДОВАНИЯ

date image2014-09-04
views image2313

facebook icon vkontakte icon twitter icon odnoklasniki icon

Стерилизация ферментера и сохранение асептики.

Важнейшим условием успешного протекания любого биотехнологи- ческого процесса является поддержание стерильности среды в ферментере и во всей ферментационной установке в целом.

Всю совокупность операций по подготовке оборудования и коммуникаций с целью создания в них асептических условий можно разделить на два важнейших процесса: стерилизация внутренних полостей и герметизация всех элементов и узлов. Первый процесс проводится в подготовительный период перед запуском оборудования (в ходе процесса ферментации осуществляются лишь профилактические мероприятия по стерилизации отдельных узлов вспомогательного оборудования). Второй процесс осуществляется и при подготовке, и при эксплуатации оборудования.

Наиболее распространенный метод стерилизации аппаратов и трубо- проводов — тепловая обработка перегретым выше 100 0 С насыщенным водяным паром. Этот метод надежнее, экономичнее и удобнее в производственных условиях, чем обработка химическими средствами.

При стерилизации важнейшим условием ее эффективности является возможность создания во всех точках внутренних полостей необходимой температуры и поддержания ее в течение заданного времени. В производственных условиях выполнение этого требования связано со значительными трудностями ввиду наличия в ферментере многочисленных тупиковых полостей, областей и зон в которые затруднен доступ пара (“слабые точки”). Наиболее трудно стерилизуемыми местами в аппаратах являются участки расположения теплообменников, барботеров, штуцера (места ввода трубопроводов, датчиков КИП), загрузочные люки, а в разводках трубопроводов — тупиковые места, которые образуются на ответвлениях и в местах присоединения к аппаратам.

Читайте также:  Световое и звуковое оборудование для концертного зала

Расчетным путем показано, что для достижения равной степени стери-лизации в перечисленных «слабых» точках и в основном обьеме аппарата продолжительность выдержки различается примерно в 100 раз, если принять температуру пара в них 100 С.

Наличие большого количества “слабых точек” обусловлено тем, что конструкционные решения большинства узлов промышленного ферментера часто заимствуются из химической технологии и поэтому они не соответствуют требованиям стерилизации.

Наиболее действенной мерой повышения эффективности стерилизации оборудования и коммуникаций является разработка оборудования с наименьшим числом таких «слабых» точек или принудительная подача пара в эти зоны через дополнительные термические затворы, специально встроенные в те участки ферментера, где наблюдается максимальная концентрация таких«слабых» точек. Так же такими термическими затворами должны быть снабжены и все трубопроводные линии аппаратов.

Химические методы стерилизации, несмотря на свою эффективность, применяются редко. Это связано с тем, что после окончания стерилизации необходимо удалить стерилизующий агент, а это достаточно трудно сделать и может привести к повторной контаминации. Наиболее удобно использование газообразных или легколетучих веществ (этиленоксид, β-пропиолактон), которые легко удалить продувая систему стерильным воздухом.

Второй процесс определяющий конструктивные особенности аппара-туры, — ее герметизация. Она решает две задачи — защиту внутреннего объема от посторонней микрофлоры и защиту окружающей среды от продуктов биосинтеза.

Проблема обеспечения герметичности обусловлена рядом причин: пара- метры проведения разных стадий технологического процесса резко различаются (например термическая стерилизация (100 0 С и выше) и культивирование (25-45 0 С), сильная вибрация при работе перемешивающих устройств, перепад температуры в различных зонах установки, все это приводит к возникновению трещин и щелей в конструкциях и узлах аппаратуры.

Большинство случаев дегерметизации приходится на запорную арматуру, в которой наиболее опасные места — уплотнение седло-клапан и уплотнение штока, на фланцевые соединения, уплотнение валов и мешалок и места ввода датчиков КИП.

Одним из важных направлений повышения эффективности герметизации является переход на сварные соединения вместо фланцевых (соединение отдельных узлов за счет болтов), на сильфонные или мембранные вентили вместо обычных, на создание торцевых уплотнений для валов перемешивающих устройств с контролируемой герметичностью.

Для снижения риска попадания извне посторонней микрофлоры внутри ферментера создают небольшое избыточное давление.

В зависимости от требований предъявляемых к чистоте продукции (лекарственные, пищевые продукты) проводят работы по дезинфекции рабочих мест и целых производственных участков, очистке воздуха рабочих зон.

Источник

Курс лекций по биотехнологии — часть 14

Если источником целевого продукта является микроорганизм (например, при
производстве антибиотиков), то для его культивирования обязательны
асептические условия, соответствующее оборудование и специальная
подготовка к проведению процесса.

микроорганизмов-рекомбинантов, которое требует усиленного контроля за
стабильностью продуцента, и, кроме того, тщательного и постоянного
соблюдения мер, предотвращающих возможность попадания этого
биообъекта в окружающую среду. Такие меры предусматривают
использование специального оборудования и соблюдения определенных
правил, относящихся непосредственно к технологическому режиму.

В современном биотехнологическом производстве наиболее частым

биообъектом, то есть продуцентом целевого продукта, является штамм
микроорганизма, выращиваемый в специальных ферментационных аппаратах
(ферментерах или ферментаторах) различных типов (рис.10). Ферментер
снабжен приспособлениями (так называемая «обвязка» ферментера),
позволяющими создавать оптимальные условия для роста биообъекта и
биосинтеза целевого продукта (не всегда эти условия совпадают).

Ферментационные аппараты, используемые фармацевтической

промышленностью, в основном, изготавливаются из нержавеющей стали. Их
объем варьирует от нескольких десятков до нескольких сотен кубометров.
Обычно ферментер, установленный в цехе ферментации, выглядит как
вертикально расположенный цилиндр с полукруглым дном, в котором
имеется приспособление для слива культуральной жидкости. В верхней
части ферментера имеется полукруглая крышка с рядом входных устройств
(вводов): для питательной среды, для посевного материала, для
пропускаемого через специальное устройство воздуха (аэрация) и выходного
устройства для вывода воздуха, прошедшего через толщу питательной
среды и т.д. В центре ферментера по его вертикальной оси находится
мешалка (одноярусная, многоярусная), обеспечивающая массообмен. Во
внутреннем пространстве ферментера находятся «отбойники»,
предотвращающие возникновение «застойных» (мертвых) зон при работе
мешалки. Этим обеспечивается равномерность концентрации растворимых
веществ и коллоидных частиц в среде.

Источник

Лекция № 16-17. І. Тема:Ферментационное оборудование

І. Тема:Ферментационное оборудование. Биореакторы (инокуляторы, ферментаторы и др.) и общие принципы аппаратурного оформления процессов культивирования биообъектов.

Способы обеспечения аэрации и перемешивания при культивировании продуцентов. Проведение ферментационного процесса для продуцентов-анаэробов.

ІІ. Цель: Ознакомить студентов с ферментационным оборудованием, видами биореакторов, общими принципами аппаратурного оформления процессов культивирования биообъектов.

ІІІ. Тезисы лекции:

Высокая производительность биотехнологических способов производства целевых продуктов с заданными свойствами обусловлена способностью микроорганизмов, культуры тканей или клеток к интенсивному размножению, т.е. быстрому наращиванию биомассы. В результате этого происходит накопление целевых продуктов в биомассе или в культуральной жидкости.

По способу проведения глубинное культивирование различают:

· В периодическом режиме.

· Непрерывно в проточном режиме.

Глубинное культивирование проводят в аппаратах, называемых ферментаторами или ферментерами.

Ферментеры, используемые в периодическом режиме, делятся на:

· Эрлифтные (англ. – аir – возду, lift — поднимать).

· С механическим перемешиванием;

· Барботажные с циркуляционным перемешиванием;

· С эжекционной системой и др.

При проведении глубинного культивирования непрерывно в проточном режиме используемые ферментеры по принципу действия делятся на:

а) Хемостаты; б) Турбидостаты.

Для каждого биотехнологического процесса должна быть разработана подходящая схема, а сам процесс должен постоянно наблюдаться u1080 и тщательно контролироваться. Для большинства практических биотехнологических процессов такими системами являются ферменторы или биореакторы, которые обеспечивают необходимые физические условия, способствующие наилучшему взаимодействию катализатора со средой и поставляемым материалом. Биореакторы варьируют от простых сосудов до весьма сложных систем с различным уровнем компьютерного оснащения.

Биореакторы изготавливаются в двух вариантах или типах. Первый тип для нестерильных систем, когда нет абсолютной необходимости оперировать с чистыми культурами микроорганизмов (например, ферментация при пивоварении, производство пекарских дрожжей и т. п.).

Биореакторы второго типа предназначены для асептических процессов, обычно используемых в производстве таких соединений как, антибиотики, аминокислоты, полисахариды и одноклеточный бактериальный белок. В реакторах такого типа все посторонние микроорганизмы должны быть исключены, что, естественно, связано со значительными сложностями при их конструировании и разработке самого биотехнологического процесса.

Основное требование к биореакторам любого типа сводится к обеспечению оптимальных условий роста продуцента или накоплению синтезируемого им продукта. Для достижения указанных целей необходимо разрабатывать технологию, призванную оптимизировать процесс, а именно: использовать подходящий источник энергии, набор питательных веществ должен соответствовать питательным потребностям организма-продуцента, из ростовой среды должны быть удалены соединения, ингибирующие его жизнедеятельность, должна быть подобрана соответствующая посевная доза и, наконец, обеспечены все остальные требуемые физико-химические условия. Экономически рентабельные процессы в своей основе весьма сходны, независимо от избранного продуцента, используемой среды и образуемого продукта.

Главная задача – получение максимального количества клеток с одинаковыми свойствами при их выращивании u1074 в определенных тщательно контролируемых условиях. Фактически один и тот же биореактор (лишь с небольшими изменениями) может быть использован для производства ферментов, антибиотиков, органических кислот или одноклеточного белка.

Другим существенным различием между биотехнологическими и химическими процессами является необходимость создания аэробных или анаэробных условий, требуемых для культивирования соответствующего организма. Поэтому в определенных случаях необходимо подавать кислород и удалять образующиеся газообразные продукты иного рода, в первую очередь двуокись углерода (СО 2).

Системы аэрациизачастую бывают очень сложной конструкции, поскольку они должны обеспечить баланс между расходом О 2 и его поступлением в нужных количествах, учитывая тот факт, что потребность в кислороде не одинакова на различных стадиях культивирования.

Читайте также:  Ауди плюс дополнительное оборудование

Крайне важным является обеспечение должного уровня теплообменав биореакторах, поскольку жизнедеятельность и метаболическая активность объектов зависит в значительной степени от колебаний температуры. Поддержание температуры в определенном узком диапазоне диктуется:

1) резким снижением активности ферментов по мере падения температуры и

2) необратимой инактивацией (денатурацией) макромолекул (в первую очередь белков) при ее повышении до критических значений.

Температурный оптимум у каждого организма лежит в определенных пределах. Большинство биотехнологических процессов осуществляется в мезофильных условиях (30–50 0С). С одной стороны, это имеет преимущество, потому что лишь в редких случаях приходится обеспечивать повышенный подогрев реакторов. Однако, с другой стороны, возникает проблема удаления избыточного тепла, выделяющегося при интенсивном росте культивируемых клеток, поэтому биореактор должен быть оснащен эффективной системой охлаждения. Еще одной серьезной проблемой при культивировании в биореакторах является пенообразование,связанное с необходимостью аэрирования содержимого, в котором постоянно присутствуют поверхностно-активные вещества (ПАВ) продукты распада жиров (мыла) и белки (составные компоненты субстрата например, белки соевой и кукурузной муки и т. п.). Образующийся слой пены опять же, с одной стороны, способствует росту аэробных микроорганизмов, а с другой – сокращает полезный объем реактора и способствует заражению культуры посторонней микрофлорой. Это заставляет интенсивно разрабатывать эффективные системы пеногашения.

Специфическим элементом биореактора является система, обеспечивающая стерильностьпроцесса. Стерилизация осуществляется на разных этапах процесса, как до его начала, так и при осуществлении и после окончания. Иными словами, в биотехнологическом производстве важное место отводится принципу асептики, выдвинутому еще в 60-е годы XIX в. Луи Пастером.

В последнее время в биотехнологию внедряется принцип дифференцирования режимов культивирования: разные этапы одного и того же процесса осуществляются при различных условиях – температура, рН, аэрация и т. п. Естественно, это создает новые (дополнительные) требования при конструировании реакторов. Таким образом, в соответствии с основными принципами реализации биотехнологических процессов современные биореакторы должны обладать следующими системами:

• эффективного перемешивания и гомогенизации среды выращивания;

• обеспечения свободной и быстрой диффузии газообразных компонентов системы (аэрирование в первую очередь);

• теплообмена, обеспечивающего поддержание оптимальной температуры внутри реактора и ее контролируемые изменения;

• стерилизации сред, воздуха и самой аппаратуры;

• контроля и регулировки процесса и его отдельных этапов.

Биотехнологически ценные продукты синтезируются как в экспоненциальной фазе (нуклеотиды, многие ферменты, витамины – так называемые первичные метаболиты), так и в стационарной фазе роста (антибиотики, пигменты и т. п. так называемые вторичные метаболиты).

Довольно широко в биотехнологии используется периодическое культивирование с подпиткой, при котором, помимо первичного внесения питательного субстрата до засева культуры, в процессе культивирования в аппарат через определенные интервалы добавляют питательные вещества либо порциями, либо непрерывно «по каплям».

Существует также отъемно-доливочное культивирование, когда часть содержимого биореактора периодически изымается и добавляется равное количество питательной среды. Такой прием обеспечивает регулярное «омолаживание» (обновление) культуры и задерживает (отдаляет) ее переход в фазу отмирания. Этот прием иногда называется полунепрерывным культивированием.

Модификацией периодического культивирования является культивирование с диализом, при котором питательный субстрат постоянно поступает в реактор через специальную мембрану. Диализ ведет к снижению концентрации продуктов жизнедеятельности клеток, неблагоприятно влияющих на их жизнеспособность. Помимо этого, диализ удаляет из культуры часть жидкости, что позволяет получать в конце процесса концентрированную биомассу.

В непрерывных процессах культивирования клетки постоянно поддерживаются в экспоненциальной фазе роста. С этой целью в биореактор непрерывно подается свежая питательная среда и обеспечивается отток из него культуральной жидкости, содержащей клетки и продукты их жизнедеятельности. Основным принципом непрерывных процессов (как уже отмечалось выше) является точное соблюдение равновесия между приростом биомассы вследствие деления клеток и их убылью в результате разбавления содержимого свежей средой. Различают хемостатный и турбидостатный режимы непрерывного культивирования.

При хемостатном режиме культивирования саморегулируемая система возникает в силу следующих причин: если первоначальное поступление u1089 свежей питательной среды и вымывание биомассы превышает скорость деления клеток, то в результате разбавления культуры снижается концентрация веществ, ограничивающих ростовые процессы и скорость роста культуры повышается; увеличивающаяся популяция начинает активнее «выедать» субстрат, что в свою очередь приводит к торможению роста культуры. Конечным итогом этих процессов является (после серии затухающих колебаний) установление равновесия между скоростью роста культуры и ее разбавлением.

Биореактор, работающий в хемостатном режиме культивирования, называют хемостатом. Его конструкция предусматривает наличие:

1) приспособления для подачи питательной среды;

2) устройства, обеспечивающего отток культуральной жидкости вместе с клетками,

3) системы, контролирующей концентрацию элементов питательной среды и управляющей скоростью подачи питательной среды.

Последнее является наиболее важным и наиболее сложно осуществимым устройством.

Турбидостатный режим культивирования базируется на прямом контроле концентрации биомассы. Наиболее распространенным методом ее определения является измерение светорассеивания с помощью фотоэлементов. Повышение концентрации клеток и соответственно оптической плотности автоматически ускоряет проток жидкости и наоборот. По своей конструкции турбидостаты отличаются от хемостатов лишь системами контроля скорости протока.

Хемостаты применяются в процессах, характеризующихся малым протоком, когда концентрация клеток изменяется незначительно с изменением скорости протока, что облегчает саморегулировку системы. Область использования турбидостатов – высокие скорости разбавления, обусловливающие быстрое и резкое изменение концентрации биомассы. С технической точки зрения турбидостат может применяться только для культивирования одноклеточных микроорганизмов. При длительном культивировании в турбидостате возникает довольно серьезная проблема, связанная с прилипанием клеток к фотоэлементу. Однако имеются и определенные преимущества. Так, например, если засевается смешанная культура, то в турбидостате автоматически отбирается более быстро растущий вид, что может использоваться для предохранения от массивного заражения посторонней микрофлорой (если, конечно, она растет медленнее) и селекции определенных форм.

Непрерывное культивирование в одном биореакторе называется одностадийным. Многостадийное выращивание предусматривает последовательное или каскадное расположение биореакторов, позволяющее обеспечивать внедрение принципа дифференцированных режимов в непрерывные биотехнологические процессы, основанные на создании системы биореакторов.

При разработке новых биотехиологических процессов сначала прибегают к периодическому культивированию. На непрерывный режим пока еще переведено небольшое число процессов, однако перспективность его не вызывает сомнений, несмотря на более сложные конструкции аппаратов и систем контроля (иными словами, на более солидные капиталовложения).

Конечно, и периодическое культивирование еще не исчерпало своих возможностей. Пока что выбор режима (периодическое или непрерывное культивирование) подчиняется (да и будет подчиняться в дальнейшем) соображениям экономической целесообразности.

Тщательное перемешивание культурной среды – один из ниболее распространенных процессов в БТ. Перемешивание необходимо для:

— равномерной доставки питательных веществ к клеткам;

— предотвравщения накопления токсических побочных продуктов метаболизма в каком-нибудь небольшом участке биореактора.

Механическое перемешивание и аэрация снабжают растущую культуру кислородом, азотом, отводят продукты газообмена и физиолическое тепло, выделяемое микроорганизмами в процессе бисинтеза, способствуют гомогенизации суспензии, увеличивают скорость процессов масса- и теплообмена.

Конструкция меалки игоает важную роль в работе биореактора. Мешалки делят на быстро- и тихоходные. Быстроходные аппараты с большой и средней циркуляционной производительностью используют в препаратах с отражательными перегородками (отбойниками). Отсутствие перегородок приводит к завихрению жидкости, снижению скорости у стенки аппарата и образованию воронки.

— Мешалки быстроходные – турбинные, пропеллерные, лопастные, дмсковые. Тихоходные – якорные, рамные, ленточные, вибрационные, скребковые; последние для перемешивания средне- и высоковязких сред. Для глубинного культивирования чаще всего используют турбинную мешалку с прямыми лопастями, расположенными радиально.

— Перемешивание культуральной среды влияет на другие параметры:

— скорость переноса кислородного из пузырьков газа в жикую среду, из среды – в клетки;

— точность измерения концентрации метаболитов культуральной жидкости;

Читайте также:  Обвалочный стол это оборудование

— эффективность диспергирования добавляемых реагентов (кислот, оснований, питательных и т.д.).

Следует соблюдать баланс между необходимостью тщательного перемешивания среды и целостностью клеток, так как при чрезмерном перемешивании в среде могут возникнуть гидромеханические эффекты, губительные для бактериальных клеток.

Непрерывный моноторинг всех параметров, дает возможность изменять условия в ходе ферментации. Как правило, оптимальные условия изменяются при каждом десятикратном увеличении объема биореактора.

Механическое перемешивание и аэрация снабжают растущую культуру кислородом, азотом, отводят продукты газообмена и физиологическое тепло, выделяемое микроорганизмамаи в процессе биосинтеза, способствуют гомогенизации суспензии, увеличивают скорость процессов масса- и теплообмена.

Конструкция мешалки играет важную роль в работе биореактора. Мешалки делят на быстро и тихоходные. Быстроходные аппараты сбольшой и средней циркуляционной производительностью используют в препаратах с отражательными перегородками (отбойниками). Отсутствие перегородок приводит к завихрению жидкости, снижению скорости у стенки аппарата и образованию воронки.

Мешалки быстроходные – турбинные, пропеллерные, лопастные, дисковые. Тихохдные – якорные, рамные, ленточные, вибрационные, скребковые; последние для перемешивания средне- и высоковязких сред. Для глубинного культивирования чаще всего используют турбинную мешалку с прямыми лопатями, расположенными радиально.

Источник

Подготовка и стерилизация технологического воздуха

Эта подготовительная операция требуется для обеспечения дыхания микроорганизмов — биообъектов, большинство которых являются аэробами. Использовать для аэрации кислород можно, но экономически и по технике безопасности это нецелесообразно. Поэтому используется воздух, который под давлением поступает в ферментер непосредственно с территории предприятия : в Ферментер объемом 50 м 3 ежечасно подается порядка 3 000 м 3 стерильного воздуха, а время ферментации измеряется сутками.

воздух подвергается не менее чем трех­кратной фильтрации и, как минимум, дважды пропускается че­рез стерилизующие фильтры. При этом, если головной фильтр является общим для всех аппаратов в цехе или вне цеха фермента­ции, то каждый из фильтров тонкой очистки относится к кон­кретному аппарату.

На стадии грубой очистки (головной фильтр) используются волокнистые фильтрующие материалы с волокнами диаметром от 15 до 50 мкм из стекла и базальта и грубозернистые пористые перегородки. Эффективность очистки на этой стадии достигает 98 %. На стадии тонкой очистки (индивидуальные фильтры) приме­няются тонковолокнистые материалы (картон и бумага) с волок­нами диаметром 0,5 мкм; зернистые жесткие фильтрующие пере­городки — керамические и металлокерамические, из разных по­лимеров. Используются также мембранные фильтры.

Постоянное использование фильтров, стерилизующих техно­логический воздух, требует также периодической стерилизации самих фильтров, так как задержанные фильтром микроорганиз­мы могут при благоприятных условиях размножаться. Стерилизация фильтров может быть проведена обработкой ан­тисептиками, ионизирующим облучением и, горячим паром. Температура при обработ­ке паром 120— 125 °С, время обработки 20 — 30 мин.

Герметизация и стерилизация оборудования

Асептические условия производства требуют стерилизации пе­ред началом процесса всей аппаратуры (изнутри) и всех матери­альных потоков. Стерильность дол­жна быть сохранена в течение всего рабочего цикла. Иными сло­вами, технологический процесс должен быть защищен от конта­минации за счет обеспечения герметичности всех соединений в аппаратуре.

В системах, работающих в асептических условиях, должна быть обеспечена возможность стерилизации всех точек внутренних объектов аппаратов и коммуникаций. Для этого перед загрузкой ферментеров через них пропускают насыщенный водяной пар под давлением. Промышленные ферментеры большого объема стерилизуют в течение часа при 125—130″С.

Подготовка и стерилизация питательных сред

Подготовка питательной среды. Микроорганизмы способны ис­пользовать любое органическое соединение, поэтому потенциаль­ными ресурсами для микробиологической биотехнологии могут слу­жить все мировые запасы органических веществ, включая первичные и вторичные продукты фотосинтеза, а также органических веществ в недрах Земли. Так, каменный уголь, природный газ и древесина могут служить сырьем для химического синтеза технических спир­тов или уксусной кислоты, а последние, в свою очередь, являются сырьем для микробиологической промышленности. В микробиоло­гической промышленности основная доля сырья (более 90%) идет н& производство этанола. Производство хлебопекарных дрожжей требу­ет 5% расходуемого в микробиологической промышленности сырья» антибиотиков — 1,7%, органических кислот и аминокислот — 1,65%-

Основными компонентами питательных сред являются источники углерода и азота.

Наиболее распространенным углеродсодержащим сырьем являют-углеводы. Углеводы используются для синтеза клеточных структур ° одновременно служат источником энергии. Для промышленного сйНтеза наиболее часто применяют глюкозу или крахмал. Кроме г0 возможно использование органических кислот и спиртов. В качестве источников органического азота могут служить белки, пептиды, свободные аминокислоты. В промышленном производстве обычно используют кукурузный экстракт, соевую муку или гидро-лизат дрожжей. Из минеральных азотсодержащих веществ наиболее часто применяют аммонийные соли серной, соляной или азотной кислот. Наиболее пригодным является сульфат аммония. Влияние источника азота на биосинтез зависит не только от самого источника азота, но и от общего состава среды. Существенное значение имеет соотношение в среде азота и углерода.

Таким образом, для нормального роста и развития микроорганиз­мов в питательной среде должны присутствовать все элементы, из которых формируется клетка.

Для получения продуктов микробиологического синтеза в зави­симости от микроорганизма-продуцента и технологии производства используют различные по составу среды. При этом помимо основных источников углерода, азота и минеральных веществ, микроорганиз­мы нуждаются в витаминах и микроэлементах. Поэтому в качестве добавки часто используются продукты естественного происхожде­ния, например, кукурузный и дрожжевой экстракт, молочную сыворотку, бульоны

Приготовление питательных сред осуществляется в специальных реакторах, оборудованных мешалками. В зависимости от растворимости и совместимости компонентов сред могут быть применены отдельные реакторы. Технология приготовления сред значительно усложняется, если в их состав входят нерастворимые компоненты. В различных биотехнологических процессах применяются различные по происхождению и количествам субстраты, поэтому процесс их приготовления варьирует. Поэтому дозирование питательных компонентов подбирается и осуществляется индивидуально на каждом производстве в соответствии с Технологическим регламентом конкретного процесса.

В качестве дозирующего оборудования при этом применяются весовые и объемные устройства, используемые в пищевой и химической промышленности. Транспорт веществ осуществляется насосами, ленточными и шнековыми транспортерами. Сыпучие компоненты подают в ферментеры с помощью вакуумных насосов. Часто применяют принцип предварительных смесей, то есть соли предварительно растворяют и затем транспортируют по трубопроводам, дозируя их подачу по объему. В силу исключительного разнообразия биотехнологических процессов и применяемых для их реализации сред, методов и аппаратуры рассмотрение данных элементов далее будет связано с конкретными биотехнологическими производствами.

Используемые в промышленности среды (как правило, жид­кие, комплексные, реже синтетические) стерилизуются тепло­вым методом (насыщенным паром).

Устойчивость микроорганизмов к тепловому воздействию опре­деляется многими факторами, в частности видовой принадлеж­ностью микроорганизма. Учитывается, что споры гораздо устой­чивее к нагреванию, чем вегетативные клетки. На эффективность тепловой стерилизации влияет количество клеток в среде: чем их меньше, тем легче достигается стерилизующий эффект. Из этого следует, что перед стерилизацией необходимо понижать количе­ство микробных клеток в среде.

Определяющее значение при тепловой стерилизации имеют температура и время ее поддержания. Чем выше температура, тем быстрее достигается стерилизующий эффект.

При тепловой стерилизации помимо гибели контаминирующих микроорганизмов могут разрушаться термолабильные вещества среды: витамины, ферменты, некоторые аминокислоты. С этим явлением, ухудшающим качество питательных сред, борются, повышая температуру и уменьшая время стерилизации.

Тепловая стерилизация жидкостей выполняется двумя спо­собами: периодическим и непрерывным. При периодическом способе стерилизация происходит в самом ферментере. Одно­временно нагревается весь объем жидкости (среды) до темпе­ратуры стерилизации, которая выдерживается определенное вре­мя, после чего понижается до заданной. Этот способ прост и применяется в случае небольших аппаратов. Его недостатки: значительный градиент температуры по объему и «недостери-лизация» в тупиках.

При непрерывном способе (более прогрес­сивном и производительном) стерилизация осуществляется в специальных установках.

В результате температуру можно увеличить до 130—150 °С; при этом время стерилизации уменьшается до 3—10 мин, что поло­жительно сказывается на качестве среды.

Недостатком в данном случае является увеличение протяжен­ности трубопроводов, что повышает вероятность вторичной кон­таминации.

Источник