Меню

Электролизное оборудование что это



Электролиз. Промышленные электролизные установки.

Электролиз – это явление выделения вещества на электродах при прохождении через электролит тока, процессы окисления и восстановления на электродах, сопровождающиеся приобретением или потерей частицами вещества электронов.

Электролизёр – это ванна, в которой процесс идёт с поглощением электрической энергии.

Схема электролизной установки

Рис. 1.1. Схема электролизной установки

Основными элементами установки являются: электролит 1, электроды 2 и источник питания 3.

Напряжение на электролизной ванне (U) состоит из трёх составляющих:

U = U1 + Uак + Uэ, (1.1)

где U1 – напряжение электрохимического разложения вещества;

Uак – приэлектродное напряжение;

Uэ – напряжение в электролите.

Мощность, выделяющаяся в электролизной ванне (Рэв), определяется выражением:

Рэв = I(U1 + Uа + Uк + Il/σ), (1.2)

где I – ток в ванне, А;

Uа ,Uк – падение напряжения на аноде и катоде, В;

l – расстояние между электродами, м;

σ – удельная проводимость электролита, 1/(Ом·м).

Только часть этой мощности расходуется на разложение вещества. Остальная мощность идёт на нагрев электролита и транспортировку ионов через раствор. Эффективность электролизного процесса оценивается выходом по энергии (Аэ, %).

где α – электрохимический эквивалент вещества;

Ат – выход металла по току, г/Дж;

U – напряжение на электролизёре, В.

Выход металла по току – это количество металла (г), выделяемое на единицу затраченной энергии (Дж).

Интенсивность процесса определяется электродной плотностью тока

S – площадь погружённой в электролит части электрода, м2.

Около поверхности электродов образуется двойной электрический слой, который противодействует подходу и выходу ионов. Для ослабления противодействия применяются:

— циркуляция электролита, для выравнивания температуры;

— импульсный источник питания.

Электролиз является одним из видов технологических процессов. Сущность его заключается в выделении из электролита при протекании по нему постоянного тока частиц вещества и в осаждении их на погружённых в электролит электродах (электроэкстракция) или переносе вещества с одного электрода через электролит на другой (электролитическое рафинирование).

— в цветной металлургии для получения лёгких металлов (алюминия, магния, кадмия и др.) и рафинирования тяжёлых металлов (меди, серебра, золота, никеля, свинца и др.);

— в электрохимии для получения хлора, водорода, тяжёлой воды,

кислорода, фтора, калия, натрия и др.;

— в машиностроении для нанесения защитных и декоративных покрытий металлических и неметаллических изделий (цинкование, никелирование, кадмирование, свинцевание, меднение, хромирование, серебрение, оксидирование и др.);

— в чёрной металлургии для лужения жести и электролитической очистки.

В металлургии используется две разновидности электролиза: электролиз водных растворов и электролиз расплавленных солей. Первый применяется для получения и электролитического рафинирования металлов с низким нормальным потенциалом (цинк, хром, олово, никель, свинец, серебро) и осуществляется при температуре не выше 100 С, второй – для получения металлов с высоким нормальным потенциалом (магний, алюминий, щелочноземельные металлы) при температуре около 1000 С.

Электролиз проводится в специально оборудованных ваннах — электролизёрах. Напряжение на ванне составляет несколько вольт, а токи достигают десятков и сотен тысяч ампер. В целях экономичной канализации больших токов одинаковые ванны соединяются в серии последовательно, соответственно напряжению преобразовательной установки.

Изменение электрического сопротивления ванн из-за нагрева электролита, изменения его химического состава, утечек тока, нарушений нормального режима эксплуатации, вывода из работы отдельных ванн серии, а также изменений напряжения питающей сети вызывает необходимость регулирования электрических параметров. Для обеспечения заданной производительности электролизной установки применяют автоматическое регулирование напряжения, мощности и силы тока серии. Наиболее распространённым способом регулирования является поддержание постоянства силы тока серии.

В цветной металлургии к наиболее мощным установкам электролиза относятся серии ванн для получения алюминия и магния. Для получения алюминия используют электролизёры напряжением 4–5 В и токами 100–150 кА, напряжения серий составляет 450–850 В. Режимы работы электролизных установок продолжительные и непрерывные. При выводе отдельных ванн в ремонт они шунтируются специальными шинами. По категории надёжности установки относятся к первой категории. Некоторые из них, например установки электролиза алюминия, благодаря большой теплоёмкости ванн, допускают кратковременные (на несколько минут) перерывы, но длительная остановка может привести к застыванию электролита и значительному расстройству технологического процесса, на восстановление которого может понадобиться до 10 суток.

В электрохимии используются электролизёры с напряжениями от 2 до 10–12 В, а в некоторых случаях до 10–220 В (установки для разложения воды, выполненные по принципу фильтр-пресса, в которых все электроды соединяют последовательно). Напряжения серий ванн принимаются 150–850 В. При электролизе хлора ток ванн составляет 100–190 кА. Режим работы установок электрохимии непрерывный. Установки электрохимии относятся к первой категории надёжности. Для установок хлора особенно опасны перерывы в электроснабжении в периоды пуска.

В установках металлопокрытий напряжение ванн колеблется от 3,5 до 9–10 В и максимально 25 В. Токи ванн меняются в пределах 0,1–5 кА и выше. В большинстве случаев требуется регулирование величины тока в широких пределах. Различие в режимах работы отдельных ванн не допускает последовательного их включения. Ванны чаще всего питаются от общих магистралей напряжением 6–12 В через индивидуальные регулировочные реостаты. Установки металлопокрытий, используемые в поточных автоматических линиях, относятся к приёмникам первой категории, отдельные ванны – ко второй категории. Суммарная мощность преобразовательных установок в цехах металлопокрытий составляет 50–200 кВт. Источником питания их являются цеховые сети напряжением 380 В. Режимы работы установок циклические, связанные с загрузкой изделий в ванны и их разгрузкой.

Для промышленного электролиза применяют постоянный ток. Наряду с традиционными методами ведения электролиза на постоянном токе, применяют режимы, связанные с использованием токов сложной формы, периодическими изменениями постоянного тока. Питание установок электролиза постоянным током производится от генераторов постоянного тока, в том числе и униполярных, и от статических полупроводниковых преобразовательных агрегатов.

Преобразовательный агрегат состоит из силового трансформатора, одного, двух или четырех выпрямительных блоков, а также коммутационной, управляющей и вспомогательной аппаратуры (защита, сигнализация). Агрегаты с выпрямленным током до 6,25 кА имеют вентильный трансформатор с одной вторичной обмоткой, при токе 12,5 кА – с двумя, при токе 25 кА – с четырьмя обмотками и соответственно с одним, двумя и четырьмя выпрямительными блоками (рис. 1.1).

Схема одного преобразовательного агрегата

Рис. 1.1. Схема одного преобразовательного агрегата

Для преобразовательных агрегатов применяются шестифазная нулевая схема с соединением вторичных обмоток трансформатора по схеме «две обратные звезды с уравнительным реактором» (рис. 1.2 а) и трёхфазная мостовая схема (рис. 1.2 б). Преобразовательные агрегаты малой мощности собираются по трёхфазной нулевой схеме (рис. 1.2 в).

Схемы преобразования

Рис. 1.2. Схемы преобразования

Большинство электролизных установок требуют регулирования напряжения выпрямленного тока. Необходимость изменения напряжения на зажимах электролизной серии в нормальном режиме ее работы определяется следующими причинами:

а) изменением напряжения в питающей сети переменного тока;

б) изменением количества ванн в электролизной серии вследствие вывода некоторого количества ванн в ремонт либо шунтирования по технологическим причинам;

в) изменением режима работы ванн, в частности, при изменении силы тока или межэлектродного пространства.

В пусковых режимах электролизных установок обычно требуется регулирование напряжения в широких пределах. Причинами этого являются, во-первых, то обстоятельство, что серия электролиза, как правило, пускается не целиком, а частями или даже отдельными ваннами. Во-вторых, пусковой режим работы ванны может существенно отличаться от нормального рабочего. Так, например, алюминиевые ванны перед пуском обжигаются (без электролита) и на них бывает пониженное напряжение, зато в первый период после пуска напряжение на ваннах держится более высоким, чем в нормальном режиме.

Поэтому регулирование напряжения осуществляется двумя способами:

1. ступенчато преобразовательным трансформатором (ТДНПВ – трёхфазный, Д – дутьевое охлаждение, Н – с РПН, ПВ – преобразователь вентильный; ТМНПУ-У – с уравнительным реактором);

2. плавное регулирование осуществляется дросселем насыщения (ДН–6300, предел регулирования 49 В).

В преобразовательных подстанциях каждый вентиль защищается быстродействующим предохранителем.

Быстродействующий предохранитель обладает токоограничивающей способностью, т. е. время плавления FU значительно меньше, чем время нарастания тока к. з. до максимального значения.

В составе преобразовательной подстанции имеются: РУ переменного тока, преобразовательные агрегаты и РУ выпрямленного тока. От РУ переменного тока, помимо агрегатов и трансформаторов собственных нужд преобразовательных подстанций, в ряде случаев питаются и другие потребители электроэнергии предприятия.

Для компенсации реактивной мощности, генерируемой преобразовательными установками, используются продольная емкостная компенсация, резонансные фильтры, многофазные схемы выпрямления и компенсационные выпрямительные агрегаты.

Преобразовательные подстанции, питающие электролизные установки по производству алюминия, магния и хлора характеризуются значительным количеством параллельно работающих выпрямительных агрегатов и большой мощностью.

Выпрямительный агрегат является источником высших гармоник тока и напряжения, вызывающих ухудшение коэффициентов мощности и дополнительные потери электроэнергии, а также помехи в каналах связи и телевидения. Степень влияния высших гармоник обратно пропорциональна числу фаз выпрямления. С ростом мощности агрегата влияние увеличивается.

Увеличение числа фаз выпрямления приводит к исчезновению гармонических составляющих порядка ниже – 1.

Увеличение числа фаз выпрямления достигается специальным выполнением обмоток либо созданием эквивалентного многофазного режима для групп агрегатов, каждый из которых работает в шестифазном режиме выпрямления. В качестве оптимальной принята двенадцатифазная схема выпрямления.

Для других производств, имеющих электролизеры на меньший ток, характерна работа одиночных агрегатов на каждую электролизную серию.

При небольшом количестве (2–4) агрегатов РУ переменного тока подстанции обычно имеет одиночную секционированную систему шин (рис. 1.3).

Схемы питания преобразовательных подстанций малой и средней мощности

Рис. 1.3. Схемы питания преобразовательных подстанций малой и средней мощности

При большом числе преобразовательных агрегатов предпочтение отдается РУ с двойной системой шин (рис. 1.4).

Схемы питания преобразовательных подстанций большой мощности

Рис. 1.4. Схемы питания преобразовательных подстанций большой мощности

Двойная система шин предпочтительна так же по условиям обеспечения пусковых режимов. Для большинства электролизных установок в пусковом режиме требуется регулирование выпрямленного напряжения в значительных пределах. Если выпрямительные агрегаты не могут обеспечить необходимого диапазона, то для дополнительного снижения напряжения временно, на пусковой период, устанавливают понижающий трансформатор. При двух системах сборных шин на одну из них через автотрансформатор подается пониженное напряжение, необходимое для преобразовательных агрегатов, а на другой системе шин поддерживается нормальное напряжение, необходимое для других потребителей электроэнергии.

Читайте также:  Склад под оборудование аренда

Преобразовательные подстанции большой мощности обычно получают питание от понижающих трансформаторов 220/10 кВ мощностью 180–200 МВА, имеющих на стороне низшего напряжения расщепленные обмотки. Для уменьшения токов к. з. на шинах 10 кВ применяют раздельную работу расщепленных обмоток.

Высокие требования к бесперебойности питания электролизных установок вынуждают применять в системах их питания повышенное резервирование, которое достигается за счет секционирования всех звеньев системы электроснабжения, применения двойной системы сборных шин, установки секционных выключателей с устройством АВР.

Преобразовательные агрегаты мощных электролизных установок присоединяют к серии непосредственно без коммутационной аппаратуры. Установки сравнительно небольшой мощности подключают с использованием автоматических выключателей, являющихся одновременно и защитной аппаратурой агрегата. Сильноточная коммутационная аппаратура применяется так же при подпитке током серий или отдельных электролизеров, шунтировании ванн при гашении анодных вспышек, выводе их в ремонт и т. п.

Быстродействующие автоматические выключатели серии ВАБ и ВАТ используются для оперативных отключений без нагрузок и редких отключений под нагрузкой. Они состоят из унифицированных узлов-блоков, укомплектованы однотипными реле и блоками управления. Выключатели серии ВАТ отличаются от серии ВАБ наличием индукционно-динамического привода. Быстродействие привода обеспечивается тем, что удерживающий магнитный поток вытесняется в параллельный участок магнитной цепи.

К электролизным ваннам ток от источников питания подводится по специальным шинопроводам, состоящим из собранных в пакеты отдельных прямоугольных шин. Обычно шинопроводы выполняются из алюминиевых шин, медь применяется только там, где алюминий непригоден вследствие его малой антикоррозионной стойкости.

Сечения шинопроводов определяют, исходя из экономической плотности тока. Рассчитанное сечение шинопровода затем проверяют на допустимое значение потерь напряжения (не более 3 %), допустимый нагрев в установившемся режиме (не выше 343 К) и на механическую прочность.

Поскольку рабочие токи электролизных ванн достигают десятков и сотен килоампер, сечение шинопровода также получается большим – до 15 дм2.

Шинопроводы, подводящие электроэнергию от выпрямительной подстанций к электролизному цеху, монтируются на специальных эстакадах. Между отдельными электролизными ваннами внутри цеха шинопроводы прокладывают в специальных шинных каналах, закрытых железобетонными плитами.

Особенности преобразовательных подстанций:

1. Все преобразовательные агрегаты на подстанции работают параллельно на одну систему выпрямленных шин;

2. Количество трансформаторов на мощных преобразовательных подстанциях может достигать 10–11 штук;

3. Преобразовательные подстанции, располагаются в непосредственной близости от корпуса электролиза и выполняются в виде пристроенных или отдельностоящих.

«+» – малая длина токопровода со стороны выпрямленного тока (снижение потерь);

«–» – ухудшение условий охлаждения.

Отдельностоящие подстанции: всё наоборот.

Выводы: электролиз — физико-химический процесс, который возникает при прохождении электрического тока через раствор либо расплав электролита. Электролиз применяется в цветной и черной металлургии, в электрохимии и машиностроении

Источник

Что такое электролизер и как его сделать своими руками?

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:

    Уровень напряжения (минимального электродного потенциала), оно должно быть от 1,8 до 2 вольт, меньшее значение «не запустит» процесс, а большее приводит к чрезмерному расходу энергии, идущей на нагрев электролита. Если в качестве источника используется блок питания, например, на 14 вольт имеет смысл разделить емкость ванны пластинами на 7 ячеек, в соответствии с рисунком 2.

Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).

Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Источник

Электролизер

Одним из многочисленных физико-химических процессов, нашедших широкое применение, как в промышленности, так и в быту, является электролиз – выделение на поверхностях подключенных к источнику тока электродов, помещенных в раствор или расплав, их составляющих (чистого металла – алюминия меди, газа и т.д.). Основной установкой, внутри которой протекает данный процесс, является электролизер.

Электролизер

Что такое электролизер

Электролизер – это специальная установка, применяемая для выделения из раствора или расплава его составляющих.

Основными характеристиками электролизера являются:

  • Рабочее напряжение для одного электрода колеблется в интервале от 1,8 до 2,0 В;
  • Сила тока – для нормального протекания процесса электролиза на электроды подают ток с значением данной характеристики от 5 до 10 А;
  • Количество электродов – минимальное количество электродов – 2, максимальное ограничивается размерами самой установки и ее предназначением;
  • Габариты электродов – в качестве электродов используют не угольные стержни, а металлические пластины, размер которых определяется предназначением установки, вольт-амперной характеристикой подаваемого на пластины тока;
  • Расстояние между разноименно заряженными поверхностями электродов – минимальное расстояние между пластинами-электродами должно быть не менее 1,5 мм;
  • Материал электрода – в современных электролизерах в качестве материала для анода и катода используют листовую нержавеющую сталь с добавкой никеля.

Также еще одной важной характеристикой электролизной установки является использование катализаторов.

Применяются такие установки для следующих целей:

  • Получение гремучего газа, состоящего из смеси водорода и кислорода (газ Брауна);
  • Выделение чистого алюминия, магния, цинка из расплавов их солей;
  • Очистка воды от растворенных в ней солей и примесей;
  • Нанесение на поверхность металлических деталей тонкого препятствующего коррозии слоя никеля, цинка;
  • Обеззараживание пищевых продуктов;
  • Очистка сточных вод от растворенных в них солей тяжелых металлов и других вредных веществ.

Важно! Платина-электрод из обычного железа применяется в электролизных установках реже, чем из нержавейки, так как оно быстрее окисляется и приходит в негодность.

Устройство и принцип работы

Самая простейшая электролизная установка состоит из нескольких «ячеек», каждая из которых включает в себя:

  • 2 пластинчатых электрода – катод (отрицательный) и анод (положительный);
  • Резиновую прокладку, располагающуюся по периметру двух смежных разноименных электродов.

Крайние ячейки оснащаются специальными патрубками, через которые отводятся выделяющиеся газы.

Несколько соединенных между собой «ячеек» электролизной установки

Электролизер может содержать от 1 до 30-40 и более таких «ячеек», одноименные пластины которых подключены последовательно.

Важно! При использовании источников питания с переменным током дополнительно применяют выпрямители, самым простейшим из которых является диодный мост.

Работает такая установка следующим образом:

  • В пространство между электродами заливают дистиллированную воду с растворенной в ней щелочью или обычной пищевой содой;
  • От источника питания на электроды всех ячеек установки подается напряжение номиналом 1,8-2,0 В;
  • В результате протекания процесса электролиза к отрицательно заряженному катоду притягиваются анионы (положительно заряженные ионы) растворенного в воде вещества, в результате чего на нем образуется тонкая пленка натрия;
  • На положительно заряженном аноде происходит разрушение молекул воды, при этом из каждой образуется 2 атома водорода и 1 атом кислорода;
  • Выделяющийся гремучий газ по отводным патрубкам попадает в предназначенную для него емкость.
Читайте также:  Прокат медицинского оборудования в курске

Интенсивность процесса электролиза зависит от величины напряжения и силы тока – при малых значениях данных характеристик процесс протекать не будет. Если источник питания будет подавать ток со слишком большими значениями вольт-амперной характеристики, заливаемый в электролизер раствор будет сильно нагреваться и выкипать.

Виды электролизеров

В зависимости от конструкции и принципа работы, различают электролизные установки 5 видов.

Сухие

Такие электролизеры состоят из пластинчатых электродов, разделенных между собой герметичными резиновыми прокладками. Часто «ячейки» установки дополнительно помещают в герметичный корпус.

Вырабатывающиеся в результате электролиза водород и кислород отводятся по специальным патрубкам, находящимся в торце корпуса или крайних пластин установки.

Проточные

Электролизные установки такого вида имеют следующее устройство:

  • Электролизная ванна (корпус) с двумя патрубками, по одному из которых в нее подается электролит, по второму отводится образующийся в результате электролиза гремучий газ;
  • Пластинчатые электроды, отделенные прокладками;
  • Бак с электролитом, расположенный выше корпуса с электродами и соединенный шлангами с патрубками электролизной ванны установки и имеющий в верхней части патрубок с газовым клапаном.

При работе подобного устройства выделяющийся газ через патрубок и шланг попадает в бак с электролитом и, создавая в нем определенное давление, через клапан на отводном патрубке выходит за пределы установки.

Мембранные

Электролизные ячейки таких установок состоят из двух электродов, разделенных между собой тонкой мембраны, пропускающей продукты электролиза и разделяющей электроды между собой.

Мембранная электролизная установка

Диафрагменные

Электролизные установки данного вида состоят из «U» образной колбы с двумя вставленными в нее электродами и 2-3 непроницаемыми диафрагмами. Используются подобные электролизеры для раздельного получения чистого водорода и кислорода.

Щелочные

В отличие от других моделей электролизеров, в таких в качестве электролита применяют раствор щелочи – каустическую соду (гидроксид натрия), являющийся не только дополнительным источником водорода и кислорода, но и катализатором для электролиза.

Схема щелочного электролизера

Такие установки, в отличие от аналогов других видов, позволяют применять более дешевые электроды из обычного железа.

Электролизер для получения водорода

Для того чтобы собрать простейший электролизер своими руками, можно воспользоваться приведенным на рисунке чертежом.

Чертёж простейшего самодельного электролизера

Обратите внимание! Электролизер – это достаточно опасная установка, выделяющийся при работе гремучий газ, скапливаясь в большом количестве, может стать причиной серьезного взрыва. Не следует размещать установку вблизи источников открытого огня, нагревательных приборов.

Электролизер для автомобиля своими руками

Для улучшения сгорания топлива в двигателе автомобиля очень часто собирают электролизер, состоящий из корпуса от старого аккумулятора с помещенными внутрь пластинами из нержавейки, двумя патрубками, один из которых соединен с бачком, заполненным электролитом, второй – с подающим в двигатель воздух шлангом (точнее с гофрированным патрубком, идущим от воздухозаборника к воздушному фильтру).

Запитывают такой самодельный проточный электролизер от аккумуляторной батареи авто при помощи реле и предохранителя на 10 А.

Электролизер своими руками для отопления дома

Применение электролизных установок для отопления дома в настоящее время не приобрело широкого распространения из-за высокой стоимости получаемого в процессе электролиза гремучего газа, по сравнению с наиболее распространенным природным.

Обзор производителей электролизеров

Основными производителями электролизёров являются как отечественные предприятия («РУСАЛ», НПФ «РутТех», АО «Уралхиммаш»), а также их зарубежные конкуренты – Teledyne Energy Systems, Inc (США), Hydrogenics Corp. (Бельгия).

Таким образом, электролизер является достаточно простой и отличающейся большим набором функций установкой, используемой для получения гремучего газа, который в будущем планируют применять в качестве топлива для двигателей внутреннего сгорания, котлов отопления.

Видео

Источник

Электролизная установка своими руками

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м3/ч).

Промышленная стационарная электролизная установка, вырабатывающая 40 м3 водорода в час (СЭУ-40)

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:

    Уровень напряжения (минимального электродного потенциала), оно должно быть от 1,8 до 2 вольт, меньшее значение «не запустит» процесс, а большее приводит к чрезмерному расходу энергии, идущей на нагрев электролита. Если в качестве источника используется блок питания, например, на 14 вольт имеет смысл разделить емкость ванны пластинами на 7 ячеек, в соответствии с рисунком 2.

Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).

А) Установка прямого электролиза воды (УПЭВ); Б) анализатор качества воды Tesp 001

Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Водородный генератор

Электролизер – один из самых распространенных водородных генераторов.

Описание и принцип работы

В общем случае водородный генератор представляет собой набор металлических пластин, погруженных в дистиллированную воду. Конструкция заключена в герметичный корпус с клеммами для подключения источника электропитания и штуцером для вывода газа.

Теоретически работу водородного генератора можно представить следующим образом: между разнополярными пластинами (анод, катод), погруженными в дистиллированную воду, проходит электрический ток. При этом вода расщепляется на кислород и водород. Чем больше площадь пластин, тем больший ток проходит по воде и тем большее количество газов выделяется. Пластины подключаются поочередно (+-+- и т. д).

Область применения

В связи с тем, что сам процесс электролиза связан с использованием большого количества электроэнергии, промышленное применение электролизеров существенно ограничено. Экономически выгоднее использовать для получения водорода химические способы.

В настоящее время водородные генераторы применяют для:

  • газосварки и газорезки водородом в условиях ювелирных мастерских;
  • снижения токсичности двигателей внутреннего сгорания (ДВС) и повышения их КПД (коэффициент полезного действия);
  • повышения КПД и снижению токсичности жидкотопливных котлов.

Устройство

Немногочисленные промышленные электролизеры, которые используют для получения водорода и кислорода, изготавливают в виде стационарных установок. Электроды в них включаются биполярно, причем их количество зависит от способа включения в сеть (трансформаторное или бестрансформаторное).

Конструкции малогабаритных водородных генераторов, которые выпускаются как отечественными, так и зарубежными компаниями и используются для повышения КПД ДВС и других целей, отличаются большим разнообразием. Кроме того существует огромное количество конструкций, изготовленных своими руками. В сети Интернет о них можно найти достаточно много информации.

Учитывая, что конструкция электролизера отличается простотой и его нетрудно изготовить собственноручно, рассмотрим конструкции нескольких подобных устройств:

  1. Простейший электролизер.
  2. Водородный генератор для автомобиля.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Устройство электролизеров

Изобретение относится к конструкции электролизера. Электролизер содержит ванну с электролитом, электроды, штангу, источник питания, при этом электроды в ванне установлены горизонтально или под углом к горизонтальной поверхности, на верхнюю поверхность анодов нанесен изоляционный слой или покрытие из изоляционной пленки для предотвращения движения ионов к катоду снизу вверх, а аноды выполнены пористыми с большой площадью контакта с электролитом за счет продувки анодных пластин, находящихся в жидком состоянии, сжатым воздухом. Обеспечивается уменьшение удельного расхода энергии и резкое снижение времени растворения анодов. 1 ил.

Читайте также:  Оборудование лифтов пожарной сигнализацией

Электролизер нашел широкое применение в металлургической, химической промышленности и в гальванотехнике.

Электролитическому рафинированию подвергают медь, никель, олово, свинец, серебро, золото [1].

За прототип предлагаемого электролизера принято классического типа устройство, содержащее ванну с электролитом, штангу, источник питания, электроды в котором располагаются вертикально. Основными недостатками таких электролизеров являются большой расход электрической энергии и большая продолжительность растворения анодов. Так, например, для получения одной тонны рафинированной меди необходимо израсходовать электрической энергии в пределах 200-400 кВт·ч [2].

Целью данного изобретения является снижение удельного расхода электроэнергии и резкое снижение времени растворения анодов. По данным [2] время растворения анодных пластин составляет 20-30 суток.

Указанная выше цель достигается существенным изменением конструкции электролизера.

На чертеже представлена конструкция электролизера, содержащего ванну 1, электролит 2, анодные платины 3, катодные платины 4, изоляционный слой 5, источник питания 6, штангу 7, подвеску 8.

В предлагаемой конструкции электролизера электроды (анодные и катодные пластины) устанавливаются горизонтально или под углом к горизонтальной поверхности.

Такое расположение обосновывается анализом влияния на движущийся к катоду ион металла трех сил [3]:

— электрического поля, равного Fэ=qE,

где q — заряд иона; Е — напряженность электрического поля;

— силы трения в жидкости (в электролите) Fтp, зависимой от ее вязкости;

— Fгр — гравитационной силы, равной Fгр=mg-4/3πr3ρg,

где m — масса иона; g — ускорение свободного падения; r — радиус иона; ρ — плотность электролита.

Удержание иона в плавающем состоянии происходит за счет сил электрического поля, на что требуется определенное количество электрической энергии.

Расчеты показывают, что на удержание тела массой один кодограмм в течение одной секунды требуется энергия 9,8 Дж.

При вертикальном расположении электродов в электролизере значительное количество энергии расходуется на удержание ионов металла в гравитационном поле. Следовательно, горизонтальная или наклонная их установка в ванне позволяет значительно сократить расход энергии при работе электролизеров.

Снижение периода времени растворения анодов достигается за счет увеличения их площади контакта с электролитом, т.е. за счет увеличения пористости, которая повышается за счет продувки анодных пластин (находящихся в жидком состоянии) сжатым воздухом.

При количестве анодов и катодов более одного верхняя поверхность анода покрывается цапон-лаком или изолируется целлулоидной лентой, что предотвращает движение ионов к катоду снизу вверх, т.е. против направления гравитационных сил.

Предлагаемая конструкция электролизера в значительной степени снизит удельные энергетические затраты на получение продукта и сократит время работы установки.

1. Глинка Н.Л. Общая химия. М.: Интеграл-пресс, 2007. С.727.

2. Технология металлов и материаловедение/ Б.В.Кнорозов [и др.]. М.: Металлургия, 1987. С.800.

3. Грабовский Р.И. Курс физики. М.: Высшая школа, 1970. С.615.

Электролизер, содержащий ванну с электролитом, электроды, штангу, источник питания, отличающийся тем, что электроды в ванне установлены горизонтально или под углом к горизонтальной поверхности, при этом на верхнюю поверхность анодов нанесен изоляционный слой или покрытие из изоляционной пленки для предотвращения движения ионов к катоду снизу вверх, а аноды выполнены пористыми с большой площадью контакта с электролитом за счет продувки анодных пластин, находящихся в жидком состоянии, сжатым воздухом.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».

Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.

Конструкция диафрагменного электролизера

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Конструкции электролизеров.

Информация для студентов / Электросинтез хлорной кислоты / Конструкции электролизеров.

В литературе имеется мало публикаций о конструкциях современных электролизеров

Известно, что используются в основном монополярные ящичные электролизеры с платино-титановыми анодами и графитовыми катодами. При применении электролизеров без диафрагмы выделяющийся на катоде водород загрязняется хлором и кислородом в количествах, превышающих взрывобезопасные пределы. В этом случае газы в электролизере следует разбавлять инертными газами.

При использовании электролизеров с диафрагмой их конструкция усложняется, а напряжение на электролизере возрастает. Однако вследствие разделения анодного и катодного пространств получаемые водород и хлор достаточно чистые и могут быть использованы; облегчаются создание безопасных условий работы и защита окружающей среды от вредных газовых выбросов.

Рис. 8 Хлоратный электролизер Ангела:

1 — графитовые аноды; 2 — катоды; 3 — катодная рама;

4 — корпус электролизера; 5 — крышка.

Сообщается о применении для получения хлорной кислоты электролизеров фильтр-прессного типа с биполярным включением электродов. Рамы электролизера, изготовленные из поливинилхлорида, снабжены диафрагмой из сетки, выполненной из полимерных материалов. Аноды покрыты платиновой фольгой, катоды — серебряные. Электролизер на нагрузку 5 кА работал при плотности тока 2,5 кА/м и напряжении на ячейке 4,4 В; выход по току составил около 60%.

Предложено также получать хлорную кислоту анодным окислением водных растворов хлоратов в трехкамерном электролизере (рис. 9)с двумя ионообменными мембранами. При применении платиновых или платино-титановых анодов в анодном пространстве можно получить достаточно чистую 2 н. кислоту, а в катодном пространстве — раствор щелочи. При этом в качестве катода можно использовать обычную сталь.

Хотя хлорная кислота, полученная электрохимическим окислением растворов НС1 или С12 в НС104, используется для производства различных перхлоратов, часто с успехом применяется также и обратный процесс — получение хлорной кислоты из перхлоратов щелочных или щелочноземельных металлов. В этом случае исходным сырьем обычно служит перхлорат натрия, получаемый электрохимическим окислением хлората натрия. Иногда перхлорат

натрия переводят в перхлораты калия, бария или других металлов обменным разложением.
Рис.8. Трехкамерный электролизер:

/ — анодная камера; 2 — пористая диафрагма, 3 — центральная камера; 4 — катионообменная мембрана; 5 — катодная камера; 6 — катод; анод; 8, 9 — соответственно катодная и анодная шины.

Один из первых промышленных методов получения хлорной кислоты был основан на реакции между перхлоратом калия и серной кислотой

КС1O4 + H2S04 = НС104 + KHS04 (3)

Хлорную кислоту отгоняли дистилляцией в вакууме. При этом в случае применения достаточно концентрированной серной кислоты получали хлорную кислоту высокой концентрации, близкую к безводной. Реализация этого процесса в промышленности связана со сложностью аппаратурного оформления, ограниченностью материалов, пригодных для работы в среде хлорной и серной кислот, и необходимостью проведения отгонки хлорной кислоты в вакууме. Поэтому применение процесса целесообразно только для получения безводной хлорной кислоты. Для получения водных растворов хлорной кислоты предложено взаимодействие перхлората калия с кремнефтористоводородной кислотой в водном растворе

КС104 + HsiF6 = НС104 + KsiF6 (4)

При этом помимо растворов хлорной кислоты получают осадок плохо растворимого кремнефторида калия. После фильтрования осадка разбавленные растворы хлорной кислоты можно подвергать концентрированию и затем возгонке в виде азеотропной кислоты концентрацией около 72%. Однако получаемые осадки кремнефторида калия плохо фильтруются, что затрудняет практическое использование этого метода.

Для получения безводной хлорной кислоты, помимо указанного взаимодействия солей хлорной кислоты с сильными неорганическими кислотами, применяют перегонку в вакууме смеси технической, примерно 70%-ной хлорной кислоты с трех—четырехкратным по объему количеством дымящейся серной кислоты.

Предложен непрерывный процесс получения безводной хлорной кислоты обезвоживанием азеотропа олеумом с вакуумной отгонкой. Схема такой установки показана на рис. 10. На рисунке изображена лабораторная установка, однако по такому же принципу может быть создана и более крупная установка. В самом аппарате всегда находится небольшое количество подвергаемой обработке смеси кислот, что уменьшает опасность, связанную с возможными взрывами. При смешении кислот требуется охлаждение смесителя во избежание перегрева и возможного термического разложения хлорной кислоты.

Источник