Меню

Дефект оборудования это определение

Классификация дефектов. Методы, средства и последовательность дефектации

Дефект — это каждое отдельное несоответствие продукции требованиям нормативной документации. По последствиям дефекты подразделяют на критические, значительные и малозначительные.

Критический дефект— это дефект, при котором использование продукции по назначению практически невозможно или исключается в соответствии с требованиями техники безопасности.

Значительный дефект — это дефект, который существенно влияет на использование продукции по назначению и (или) на ее долговечность, но не является критическим.

Малозначительный дефект — это дефект, который не оказывает существенного влияния на использование продукции по назначению и на ее долговечность. По месту расположения все дефекты подразделяют на наружные и внутренние. Наружные дефекты, такие как деформация, поломки, изменение геометрической формы и размеров, легко выявляют визуально или в результате несложных измерений. Внутренние дефекты, такие как усталостные трещины, трещины термической усталости и т. п., выявляют различными методами структуроскопии деталей. К методам структуроскопии относят магнитодефектоскопию, рентгеноскопию, ультразвуковую дефектоскопию и другие методы. Таким образом, в процессе структуроскопии деталей выполняется комплекс работ, состоящий в выявлении и характеристике дефектов, имеющихся в деталях. Дефекты по возможности исправления классифицируют на исправимые и неисправимые.

Исправимые дефекты — это дефекты, устранение которых технически возможно и экономически целесообразно. К ним относят такие дефекты, как деформации, вмятины, обломы, износ поверхностей, задиры и другие дефекты, не ведущие к полной утрате работоспособности детали.

Неисправимые дефекты — это дефекты, устранение которых технически невозможно или экономически нецелесообразно. По причинам возникновения дефекты подразделяют на три класса: конструктивные, производственные, эксплуатационные.

Конструктивные дефекты — это дефекты, выражающиеся в несоответствий требованиям технологического задания или установленных правил разработки (модернизации) продукции. Причины таких дефектов могут быть весьма различны: ошибочный выбор материала изделия, неверное определение, размеров деталей, режима термической обработки и т. д. Эти дефекты являются следствием несовершенства конструкции и ошибок конструирования.

Производственные дефекты — это дефекты, выражающиеся в несоответствии требованиям нормативной документации на изготовление (ремонт) или поставку продукции. Такого рода дефекты возникают, в результате нарушения технологического процесса при изготовлении или восстановлении деталей. Производственные дефекты подразделяют на шесть групп:

Первая группа — дефекты плавления и литья. К ним относятся: отклонения химического состава от заданного, ликвация, газовые поры, земляные и шлаковые включения, усадочные раковины, спаи, горячие и холодные трещины и др.

Вторая группа — дефекты, возникающие при обработке давлением. К ним относятся: поверхностные и внутренние трещины, разрывы, риски, волосовины, закаты, плены, расслоения, флокены, зажимы и т. д.

Третья группа — дефекты термической, химикотермической и электрохимической обработки. В эту группу входят: термические трещины, обезуглероживание, науглероживание, водородные трещины, перегрев, пережог, трещины отслаивания и др.

Четвертая группа — дефекты механической обработки. К этой группе относятся: отделочные трещины, прижоги, шлифовочные трещины, нарушение герметических размеров.

Пятая группа — дефекты, возникающие при правке, монтаже и демонтаже. К ним относятся: рихтовочные и монтажные трещины, погнутость, обломы резьбы, нарушение посадок.

Шестая группа — дефекты соединения металлов сваркой и наплавкой. В эту группу входят: раковины, поры, шлаковые включения, перегрев, изменение размеров зерна, горячие и холодные трещины, непровар, неполное заполнение шва, нахлест, смещение кромок шва, непропаивание, непроклеивание, отслоение и др.

Эксплуатационные дефекты — это дефекты, которые возникают в результате износа, усталости, коррозии и неправильной эксплуатации. В процессе эксплуатации наибольший процент отказов возникает в результате изнашивания деталей.

Изнашивание— это процесс постепенного изменения размеров и формы тела при трении, проявляющийся в отделении с поверхности трения материала и в его остаточной деформации. Изнашивание деталей зависит от ряда факторов, в частности от условий трения. В зависимости от наличия между трущимися телами смазки различают сухое, граничное и жидкостное трение. Учитывая, что каждому классу деталей присущи конструктивные особенности и определенные условия эксплуатации, можно ориентировочно установить характерные дефекты деталей каждого класса.

Техническое состояние деталей определяют внешним осмотром, остукиванием, измерением размеров, проверкой с помощью универсальных инструментов, специальных шаблонов, приборов, приспособлений и стендов.

При осмотре выявляют наружные повреждения деталей, деформации, трещины, задиры, обломы, прогар, раковины, коррозию, негерметичность и др.

Остукиванием определяют состояние неподвижных соединений (ослабление посадок заклепок, штифтов, шпилек, колец), наличие трещин в корпусных деталях. При легком простукивании плотно сидящие и неподвижные детали издают звонкий металлический звук, а в случае наличия трещин или слабой посадки — дребезжащий, глухой.

С помощью универсальных измерительных средств определяют фактические размеры, отклонения от размеров, формы, взаимного расположения конструктивных элементов детали. В соединениях измеряют величину зазора. Для определения геометрических параметров деталей используют штангенциркули, микрометры, индикаторные нутромеры, штангензубомеры и др. Порядок измерения, применяемый инструмент, приспособления, место замеров указываются в соответствующих технологических картах.

С целью повышения производительности и упрощения контроля и сортировки деталей в специализированном ремонтном производстве применяют дефектовочные калибры (жесткий предельный инструмент) и шаблоны. Шаблоны изготавливают по принципу однопредельных скоб.

Погнутость, скрученность, биение и коробление поверхностей деталей определяют при помощи специальных приспособлений и устройств. Для этой цели используют поверочные плиты; универсальные штативы с индикаторами часового типа, специальные призмы и центры, линейки, угольники, щупы.

Скрытые дефекты деталей (трещины, раковины и др.) выявляют пневматическим, гидравлическим, магнитным, капиллярным и ультразвуковым методами.

Пневматический метод применяют для проверки герметичности радиаторов, топливных баков, топливопроводов, резиновых камер и т. д. Деталь погружают в ванну с водой. Если она имеет больше одного отверстия, то остальные закрывают пробками, а в оставшиеся подают воздух. По пузырькам выходящего воздуха определяют место дефекта.

Гидравлическим методом на специальных стендах проверяют герметичность рубашек блоков, головок цилиндров, всасывающих труб двигателей и т. д. Деталь устанавливают на стенд, отверстия закрывают специальными заглушками с прокладками, внутреннюю полость заполняют водой и создают определенное давление. Подтекание воды укажет место трещины. Гидравлический метод применяют также при проверке плунжерных пар, нагнетательных клапанов топливных насосов высокого давления, форсунок и топливопроводов после ремонта.

Магнитную дефектоскопию применяют для обнаружения скрытых трещин, пор, шлаковых включений в деталях, изготовленных из ферромагнитных материалов. Метод основан на появлении магнитного поля рассеивания в зоне расположения дефекта при прохождении магнитно-силовых линий через деталь. Намагничивание производится пропусканием электрического тока через деталь. Перед намагничиванием деталь посыпают ферромагнитным порошком или поливают суспензией, состоящей из трансформаторного масла (40%), керосина (60%) с добавлением 50 г/л магнитного порошка. Частицы порошка концентрируются по краям дефекта, как у полюсов магнита, и указывают место его расположения и конфигурацию.

Капиллярные методы позволяют выявить нарушения сплошности (трещины, поры и т. п.) у деталей, изготовленных из ферромагнитных и немагнитных материалов. Они основаны на способности некоторых жидкостей проникать в мельчайшие поверхностные нарушения сплошности. К этим методам относится люминесцентная и цветная дефектоскопии.

Простейший из капиллярных методов — цветная дефектоскопия. Проникающую жидкость (керосин — 65%, трансформаторное масло — 30%, скипидар — 5%) окрашивают в красный цвет (добавляется судан, 10 г/л). Ее наносят на обезжиренную поверхность и через 5-10 мин деталь протирают. Для проявления трещины используют раствор масла, который наносят на проверяемую поверхность. По мере высыхания на белой поверхности появляется узор, показывающий расположение дефекта.

Читайте также:  Задача замены оборудования excel

Источник



5. Методы оценки технического состояния оборудования

материал предоставил СИДОРОВ Александр Владимирович

5.1. Общее понятие об оценке технического состояния оборудования

Техническое состояние – состояние оборудования, которое характеризуется в определенный момент времени при определённых условиях внешней среды значениями параметров, установленных регламентирующей документацией [1].

Контроль технического состояния – проверка соответствия значений параметров оборудования требованиям, установленным документацией, и определение на этой основе одного из заданных видов ТС в данный момент времени.

В зависимости от необходимости проведения ТОиР различают следующие виды ТС [2]:

  • хорошее – ТОиР не требуются;
  • удовлетворительное – ТОиР осуществляются в соответствии с планом;
  • плохое – проводятся внеочередные работы по ТОиР;
  • аварийное – требуется немедленная остановка и ремонт.

С целью установления фактического ТС оборудования, выявления дефектов, неисправностей, других отклонений, которые могут привести к отказам, а также для планирования проведения и уточнения сроков и объёмов работ по ТОиР проводятся технические обследования (осмотры, освидетельствования, диагностирование). Технические обследования оборудования, эксплуатация которого регламентируется нормативными актами, проводится в порядке, установленном соответствующими нормативными актами.

Технический осмотр – мероприятие, выполняемое с целью наблюдения за ТС оборудования.

Техническое освидетельствование – наружный и внутренний осмотр оборудования, испытания, проводимые в срок и в объёмах, в соответствии с требованиями документации, в том числе нормативных актов, с целью определения его ТС и возможности дальнейшей эксплуатации.

Техническое диагностирование – комплекс операций или операция по установлению наличия дефектов и неисправностей оборудования, а также по определению причин их появления.

5.2. Методы оценки технического состояния оборудования

Различают субъективные и объективные методы оценки ТС оборудования.

Под субъективными (органолептическими) методами подразумеваются такие методы оценки ТС оборудования, при которых для сбора информации используются органы чувств человека, а также простейшие устройства и приспособления, предназначенные для увеличения чувствительности в рамках диапазонов, свойственных органам чувств человека. При этом для анализа собранной информации используется аналитико-мыслительный аппарат человека, базирующийся на полученных знаниях и имеющемся опыте. К субъективным методам оценки ТС относят визуальный осмотр, контроль температуры, анализ шумов и другие методы.

Под объективными (приборными) методами подразумеваются такие методы оценки ТС, при которых для сбора и анализа информации используются специализированные устройства и приборы, электронно-вычислительная техника, а также соответствующее программное и норма-тивное обеспечение. К объективным методам оценки ТС относятся вибрационная диагностика, методы неразрушающего контроля (магнитный, электрический, вихретоковый, радиоволновой, тепловой, оптический, радиационный, ультразвуковой, контроль проникающими веществами) и другие.

5.3. Порядок и особенности проведения визуального осмотра оборудования

Порядок проведения осмотров оборудования основывается на последовательном обследовании его элементов по кинематической цепи их нагружения, начиная от привода до исполнительного элемента. Для этого необходимо знать конструкцию оборудования, состав и взаимодействие его элементов.

Вначале проводится общий осмотр оборудования и окружающих его объектов. При общем осмотре изучается картина состояния оборудования. Общий осмотр может носить самостоятельный характер и применяется при периодических осмотрах оборудования технологическим персоналом.

Под детальным понимается тщательный осмотр конкретных элементов оборудования. Детальный осмотр в зависимости от требований соответствующих нормативных и методических документов, проводится в определённом объёме и порядке. Во всех случаях детальному осмотру должен предшествовать общий осмотр.

Общий и детальный осмотр могут проводиться при статическом и динамическом режиме оборудования. При статическом режиме элементы оборудования осматриваются в неподвижном состоянии. Осмотр оборудования при динамическом режиме проводится на рабочей нагрузке, холостом ходу и при тестовых нагружениях (испытаниях).

Осмотр оборудования при включении или остановке механизма ориентируется в основном на контроль качества затяжки резьбовых соединений, отсутствие трещин корпусных деталей, целостность соединительных элементов. В рабочем режиме дополнительно проверяются биения валов, муфт, утечки смазочного материала, отсутствие контакта подвижных и неподвижных деталей.

При осмотре могут быть применены три основных способа: концентрический, эксцентрический, фронтальный. При концентрическом способе (рисунок 5.1) осмотр ведётся по спирали от периферии элемента к его центру, под которым обычно понимается средняя условно выбранная точка. При эксцентрическом способе (рисунок 5.2) осмотр ведётся от центра элемента к его периферии (по развёртывающейся спирали). При фронтальном способе (рисунок 5.3) осмотр ведётся в виде линейного перемещения взгляда по площади элемента от одной его границы к другой.

Концентрический способ осмотра детали

Рисунок 5.1 – Концентрический способ осмотра детали

Эксцентрический способ осмотра детали

Рисунок 5.2 – Эксцентрический способ осмотра детали

Фронтальный способ осмотра детали

Рисунок 5.3 – Фронтальный способ осмотра детали

При выборе способа осмотра учитываются конкретные обстоятельства. Так, осмотр помещения, где установлено оборудование, рекомендуется проводить от входа концентрическим способом. Осмотр элементов круглой формы целесообразно вести от центра к периферии (эксцентрическим способом). Фронтальный осмотр лучше применять, когда осматриваемая площадь обширна и её можно разделить на полосы.

Под идентификацией дефектов и повреждений подразумевается отнесение неисправностей к определённому классу или виду (усталость, износ, деформация, фреттинг-коррозия и т.п.). Идентифицируя дефект или повреждение, зная его природу, специалист в дальнейшем может определить причины появления неисправности и степень её влияния на ТС оборудования. Идентификация выявленных дефектов и повреждений осуществляется путём сравнения их характерных признаков с известными образцами или описаниями, которые для удобства пользования могут собираться и систематизироваться в иллюстрированных каталогах (таблица 5.1).

Таблица 5.1 – Пример каталога (базы данных) описаний неисправностей, дефектов и повреждений

Завершающая стадия заключается в дополнительном осмотре элементов оборудования для уточнения ранее полученных результатов и их регистрации в отчётных формах.

Регистрационные формы – это определённый порядок записи результатов опроса, собственно осмотра и дополняющие их графические изображения деталей и объекта в целом: рисунки, эскизы, чертежи, фотоснимки и т.п. На графических изображениях должны обозначаться точка начала осмотра и его направление, места расположения обнаруженных дефектов и повреждений.

Формализация результатов проведения осмотра осуществляется протоколом осмотра. В протоколе осмотра отражается то, что специалист имел возможным обнаружить при осмотре, в том виде, в котором обнаруженное наблюдалось. Выводы, заключения, предположения специалиста о причинах возникновения дефектов и повреждений остаются за рамками протокола и обычно оформляются отдельным актом или отчётом. Не заносятся в протокол и сообщения лиц о ранее обнаруженных отклонениях, а также произошедших до прибытия специалиста изменениях обстановки. Такие сообщения оформляются самостоятельными протоколами.

К составлению протокола осмотра надо подходить с учётом того, что он может выступать в качестве самостоятельного документа. В этих целях протокол составляется краткими фразами, дающими точное и ясное описание осматриваемых объектов. В протоколе употребляются общепринятые выражения и термины, одинаковые объекты обозначаются одним и тем же термином на протяжении всего протокола. Описание каждого объекта осмотра идёт от общего к частному (вначале даётся общая характеристика осматриваемого оборудования, его расположение на месте осмотра, а затем описывается состояние и частные признаки). Полнота описания объекта определяется предполагаемой значимостью и возможностью сохранения данных. Фиксируются все имеющиеся признаки дефектов и особенно те, которые могут быть со временем утрачены. Каждый последующий объект описывается после полного завершения описания предыдущего. Объекты, связанные между собой, описываются последовательно с тем, чтобы дать более точное представление об их взаимосвязи. Количественные величины указываются в общепринятых метрологических величинах. Не допускается употребление не-определённых величин («вблизи», «в стороне», «около», «рядом», «почти», «недалеко» и пр.). В протоколе отмечается факт обнаружения каждого из следов и предметов, в отношении каждого объекта указывается, что было с ним сделано, какие средства, приёмы, способы были применены. При описании оборудования и отдельных его элементов в протоколе приводятся ссылки на планы, схемы, чертежи, эскизы и фотографии. Каждый осматриваемый элемент оборудования должен иметь отдельную запись о результатах его осмотра. Выводы протокола должны содержать информацию о наличии и характере дефектов, а при невозможности его установления – о необходимости последующего проведения идентификации. [3]

Читайте также:  Оборудование для производства молока и сливок

Источник

Дефект

Схема рентгеновской трубки

Дефект, как трактует ГОСТ 15467-79, — в общем случае, следует понимать, как любое отклонение изготовленной продукции от требований, установленных нормативно-технической документацией. Дефекты бывают явными, которые, в большинстве своём, выявляются визуально, и скрытыми, которые без специальных приборов обнаружить невозможно.

Различаются также дефекты по уровню значимости, и бывают малозначительными, когда продукция сохраняет все свои технические характеристики и качества, теряя при этом, в какой-то степени, товарный вид. Значительный дефект уже оказывает существенное влияние на срок службы изделия и использование его по прямому назначению. Критический же дефект делает дальнейшее использование продукции не только невозможным, но и недопустимым.

Подразделяются дефекты и по уровням экономической целесообразности: на устранимые, когда имеется техническая возможность исправить дефект при малых экономических затратах; и неустранимые, когда нет технической возможности, либо такое исправление нецелесообразно по экономическим показателям.

Дефект изделия

Дефект в виде продольной трещины сварного шва

Дефект в виде трещины сварного шва

Кроме того, дефекты подразделяются на производственно-технологические и эксплуатационные.

Производственно-технологические дефекты могут быть внесены в изделие или конструкцию в процессе проектирования при недостаточном или небрежном проведении расчётов, недооценке предстоящих нагрузок и недостаточном запасе прочности изделия.

В процессе монтажа строительных конструкций, сборке и наладке станков, при производстве сварочных работ и т.д. также могут быть допущены дефекты. Они обусловливаются низкой квалификацией персонала, отступлением от требований технологической документации, несоответствием технических характеристик сырья и др.

Эксплуатационные дефекты образуются в результате естественного износа изделия, нарушения правил его эксплуатации, транспортировки и хранения. Проявляются такие дефекты в виде:

  • трещин усталости, которые возникают под действием систематических переменных напряжений;
  • трещин-надрывов, возникающих при работе механизмов в тяжёлом режиме;
  • термических трещин, обусловленных резкой сменой температур;
  • трещин ползучести, возникающих по границам зёрен металлов при высоких температурах;
  • поражения металлов коррозией от воздействия агрессивной среды.

Большинство различных дефектов поддаётся выявлению средствами неразрушающего контроля, которыми оснащаются лаборатории многих предприятий.

Источник

ВИДЫ ДЕФЕКТОВ, НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ И ДИАГНОСТИКА ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ

Для обеспечения надежной работы машин большое значение имеет периодический контроль их состояния при эксплуата­ционном обслуживании.

Для определения степени износа и обнаружения появив­шихся в процессе изготовления или эксплуатации дефектов деталей производятся различные технические измерения.

Дефект — это отдельное несоответствие того или иного из­делия или детали установленным требованиям. Дефекты бы­вают явными и скрытыми, критическими и некритическими. При наличии критического дефекта использование детали по назначению невозможно.

По происхождению дефекты бывают производственными и эксплуатационными.

К производственным дефектамотносятся: усадочные раковины — полости, образующиеся при остывании металла; неметаллические включения, попадающие в металл извне; неравномерность химического состава металла в отливках; волосные трещины, образующиеся внутри толстого проката; закалочные трещины — разрывы металла в процессе закал­ки. Сюда же можно отнести трещины в зоне сварного шва; не­провары —отсутствие сплавления между основным и наплав­ленным металлом, а также между отдельными слоями при многослойной сварке.

К эксплуатационным дефектамотносятся: трещины ус­талости —разрывы в детали вследствие длительного действия высоких переменных напряжений, которые возникают в мес­тах концентрации напряжений. Ширина раскрытия трещин усталости не превышает нескольких микрометров. К эксплуа­тационным дефектам также можно отнести:

• коррозионные поражения металла в результате химичес­кого и электрохимического воздействия, масштаб которых за­висит от агрессивности среды. Коррозия может быть сплош­ной, точечной,ячейковой;

• трещины ползучести, которые возникают в металлах по границам зерен при высоких температурах;

• термические трещины, возникающие при резкой смене температур, при недостаточной смазке и заеданиях поверхно­стей трущихся деталей;

• трещины-надрывы, возникающие при перегрузке дета­лей при работе в нерасчетном режиме.

Дефекты геометрии трубы могут быть как производствен­ными, так и эксплуатационными: вмятина; гофр — чередую­щиеся поперечные выпуклости и вогнутости стенки трубы, приводящие к излому оси трубы. Эрозия, вмятина в прокате, риска, расслоение, утонение стенки трубы.

Эксплуатация трубопровода при наличии опасных де­фектов допускается при введении ограничений на режимы перекачки.

Причинами дефектов и разрушения валов могут быть при­чины металлургического характера, когда имеются дефекты в заготовках: поверхностные и внутренние трещины, расслое­ния и разрывы вследствие механических и термических на­пряжений, возникающих при изготовлении прутков.

Наиболее опасными с точки зрения возникновения устало­стных трещин являются сечения, в которых изменяется диа­метр вала (галтельные переходы) и шпоночные пазы в местах посадки рабочего колеса на вал и под муфтой. Разрушение вала может произойти под рабочим колесом под действием цик­лических нагрузок. Местом зарождения трещин являются шпоночные канавки, где условия работы материала наибо­лее тяжелые.

Кроме перечисленных дефектов существуют следующие отклонения формы отдельных деталей от проектной: овальность, конусность, бочкообразность, изогнутость, неплоскостность. Существуют также отклонения относительного распо­ложения отдельных деталей в собранном узле: перекос осей и непараллельность, торцевое биение, несоосность, радиальное биение, несимметричность.

Объективная информация о техническом состоянии меха­низмов получается с помощью средств технической диагнос­тики—информационно-измерительного комплекса, позволя­ющего анализировать и накапливать информацию. В основу количественной оценки технического состояния положен ди­агностический параметр. В качестве параметров могут исполь­зоваться: мощность навалу; давление; температура; парамет­ры вибрации и т. д.

При диагностировании оборудования и трубопроводов ис­пользуют следующие важные понятия.

Работоспособность — состояние механизма или иного объекта, при котором он способен выполнять свои функции.

Отказ — событие, заключающееся в нарушении работос­пособности механизма или иного объекта (понятие вероятно­стное).

Неисправность — состояние объекта, при котором он не соответствует одному из требований техдокументации.

Безотказность—свойство объекта непрерывно сохранять работоспособность в течение некоторого периода времени (вре­мени наработки).

Долговечность — свойство механизма сохранять работос­пособность до наступления предельного состояния при установ­ленной системе технического обслуживания и ремонта (ТОР).

Срок службы — это все календарное время эксплуатации оборудования (например, насоса) до предельного износа.

Надежность— это свойство объекта выполнять заданные функции. Это главный качественный показатель объекта. Ос­новной показатель надежности — вероятность безотказной работы, которую называют функцией надежности.

В разные периоды эксплуатации насосов частота (ин­тенсивность) отказов разная (рис.1). Здесь три периода: I — приработки; II— нормальной эксплуатации; III— старения.

Читайте также:  Все о моечном оборудовании для автомобилей

Природа высокой интенсивности отказов (период!) заклю­чается в неидеальности изготовления деталей и незамеченных дефектах.

Рис.1.Типичный график интенсивности отказов механизмов в процессе эксплуатации

Период внезапных отказов II неустраним, их интенсивность невелика до тех пор, пока износ деталей не достигает некото­рой величины — после чего наступает период старения III.

Для оценки параметров надежности насоса необходимо выбрать элемент, лимитирующий надежность. Для насосов такими элементами являются торцовые уплотнения (средняя наработка 3500 ч), щелевые уплотнения (6300 ч), подшипни­ки (12000 ч), валы (60000 ч). Главный резерв повышения па­раметров надежности насоса—повышение качества торцовых уплотнений.

Межремонтный ресурс насосного оборудования колеблет­ся в пределах 4000—8000 ч. Около 30% всех отказов падают на торцовые уплотнения валов, 15%—-на подшипники, 9% — на маслосистему. Повышенная вибрация вызывает до 10% отказов. По вине персонала — до 12%.

Основной причиной снижения КПД насосов (до 3%) явля­ется износ щелевого уплотнения и рост перетока нефти из по­лости нагнетания во всасывающий патрубок.

Пагубно на состоянии насосов сказывается вибрация, при которых детали испытывают знакопеременные нагрузки и быстро разрушаются. В первую очередь разрушаются подшип­ники и соединительные муфты. Вибрация ослабляет крепле­ние узлов к фундаменту и узлов между собой.

Не существует машин с идеальным качеством изготовле­ния, поэтому невозможно ликвидировать все процессы, вызывающие вибрацию насосов. Центр масс ротора никогда не со­впадает с осью вращения вала. Сила механического дебалан­са является основным источником появления вынужденных гармоник вибрации роторных машин. Рост амплитуд отдель­ных гармоник вибрации используется в качестве диагности­ческого признака наличия дефектов. В 90% случаев аварий­ной остановки насоса этому предшествует резкое увеличение амплитуды вибраций.

Диагностический метод эксплуатации оборудования сво­дится к сопоставлению диагностического параметра с допус­тимым значением. Вибрационная диагностика основана на использовании среднеквадратичного значения виброскорос­ти (мм/с), например, крышки или корпуса подшипника.

Неразрушающий контроль (НК) позволяет обнаружить дефекты и проверить качество деталей без нарушения их пригодности к использованию по назначению. Перечислим несколько существующих методов неразрушающего конт­роля.

Визуально-оптический метод позволяет выявить относи­тельно крупные трещины, механические повреждения, оста­точную деформацию.

Капиллярный метод основан на увеличении контраста между дефектами и бездефектным материалом с помощью спе­циальных проникающих жидкостей.

Ультразвуковой контроль позволяет определить коорди­наты и площадь дефекта. Шуп должен плотно прилегать к по­верхности изделия.

Магнитная дефектоскопия основана на том, что дефекты изделий вызывают искажения магнитного поля, наведенного в изделии.

Гамма-дефектоскопия позволяет выявить скрытые дефек­ты с помощью портативных и маневренных приборов.

Важнейшими характеристиками методов неразрушающе­го контроля являются чувствительность и производитель­ность. Чувствительность определяется наименьшими разме­рами выявляемого дефекта. Вышеперечисленные методы по­зволяют обнаружить трещины раскрытием более 0,001 мм.

Гаммаграфический метод фиксирует трещины, глубина кото­рых составляет 5% от толщины детали.

Неразрушающий контроль валов насосов и электродвига­телей проводится с применением визуального, ультразвуково­го и магнитопорошкового методов при входном контроле, так и при эксплуатации и ремонте. При этом выявляются поверх­ностные и внутренние трещиноподобные дефекты, раковины и другие нарушения сплошности материала. НК проводится через каждые 10—16 тыс. ч наработки вала в зависимости от мощности и количества пусков насоса.

При выполнении послестроительной дефектоскопии про­изводится проверка:

• внутренней геометрии труб и состояние стенок после ук­ладки и засыпки трубопровода;

• сплошности изоляционного покрытия после его засыпки методом катодной поляризации.

Внутренняя геометрия (вмятины и изгибы) проверяется пропуском калибровочного устройства (снаряда-профилемера) в потоке воды или воздуха. Пропуск осуществляется по техно­логии пропуска очистного устройства.

Внутритрубная дефектоскопия проводится с целью обна­ружения трещин и других дефектов в стенках труб и сварных соединениях. Она проводится в потоке воздуха, природного газа или воды. Режим работы компрессорной или насосной станции должен быть согласован со скоростью перемещения снаряда (обычно используется скорость около 1,0 м/с). Приуве- личении скорости дефектоскопа он дает искаженные данные.

Обнаружение дефектов тела трубы осуществляется внутритрубной инспекцией с помощью снарядов-профилемеров и снарядов-дефектоскопов. Обобщенно их называю внутритрубными инспекционными снарядами (ВИС).

ВИС — это интеллектуальные инспекционные поршни, имеющие стальной корпус и полиуретановые диски. Внутри-трубные инспекционные снаряды имеют опорные ролики и средства обнаружения типа «трансмиттер». Известны случаи преодоления поршнями расстояний свыше 850 км без установ­ки промежуточных камер пуска-приема.

Снаряд-профилемер — это электронно-механический сна­ряд, оснащенный рычажными датчиками, которые измеряют проходное сечение, положение сварных швов, овальностей, вмятин и гофров. Искривление оси трубопровода фиксирует­ся индикатором поворота по взаимному положению осей двух секций профилемера. Пройденное снарядом расстояние опре­деляется с помощью измерительных колес. Привязка обнару­женных дефектов к определенным сечениям трассы осуществ­ляется с помощью специальных маркеров.

Для внутренней дефектоскопии применяются ультразву­ковые и магнитные снаряды-дефектоскопы (табл. 1). Ком­пьютеризированное диагностическое устройство использу­ет метод регистрации отраженных импульсных ультразву­ковых сигналов от внутренней и внешней поверхностей трубы. При этом датчик погружен в поток нефти. Толщина стенки определяется по времени запаздывания второго сиг­нала. Кроме того, сигнал отражается от несплошностей в металле трубы.

Таблица 1. Технические характеристики магнитных снарядов-дефектоскопов при диаметре трубопровода 1220 мм.

Наименование параметров Значение параметра
Скорость продвижения по трубе до 5 м/с
Максимальная длина обследуемого участка трубопровода 500 км
Минимальный проходимый радиус кривизны 3D
Точность локации дефектов с использованием маркеров через 2 км: по длине трубопровода 0,5 м
Толщина стенок трубопровода: минимальная максимальная 11 мм 20 мм
Максимальное давление в трубопроводе 8 МПа
Масса прибора 3500 кг
Перекачиваемая среда Газ, газовый конденсат, нефть, вода
Длина дефектоскопа 2500 мм
Время непрерывной работы 90 часов

Для более полного обследования необходимо комплексное диагностирование, основанное на различных физических яв­лениях, потому что внутритрубные измерительные снаряды не выявляют напряженное состояние трубы.

С технической точки зрения техническая диагностика тру­бопроводов включает в себя следующие действия:

• обнаружение дефектов на трубопроводе;

• проверку изменения проектного положения трубопрово­да, его деформаций и напряженного состояния;

• оценку коррозионного состояния и защищенности трубо­проводов от коррозии;

• контроль технологических параметров транспорта про­дукта;

• интегральную оценку работоспособности трубопроводов, прогнозирование сроков службы и остаточного ресурса трубо­провода.

Система комплексной диагностики линейной части трубо­проводов базируется на использовании следующих методов контроля:

• статистических методов оценки эксплуатационных свойств элементов антикоррозийной защиты и интенсивности отказов;

• диагностики состояния металла труб с помощью внутритрубных инспекционных приборов, а также металлографичес­ких методов оценки;

• диагностики электрохимической и биологической актив­ности среды на потенциально опасных участках трассы;

• контрольной шурфовки и периодических гидравлических переиспытаний потенциально опасных участков трубопровода.

Выбор интервала времени между измерениями диагности­ческого параметра зависит от его чувствительности к измене­нию состояния объекта и от степени развития дефекта. Так процесс разрушения подшипника качения от начала появле­ния дефекта занимает 2—3 месяца.

Дополнительный дефектоскопический контроль включает идентификацию дефекта, обнаруженного инспекционным снарядом. Идентификация дефекта заключается в определе­нии типа, границ и размеров дефекта. Контроль проводится персоналом, прошедшим обучение и аттестацию по методам неразрушающего контроля.

Источник